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Who was Shakespeare?

Baptized on April 26th 1564 in Stratford-upon-Avon
Died on April 23rd 1616 in Stratford-upon-Avon
38 plays
154 Sonnets
Broad classification into tragedies, comedies, and histories.
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Shakespeare’s plays

COMEDIES TRAGEDIES HISTORIES
A Midsummer Night’s Dream Antony and Cleopatra The Life and Death of King John
All’s Well That Ends Well Coriolanus Henry IV, Part 1
As You Like It Cymbeline Henry IV, Part 2
Cymbeline Hamlet Henry V
The Comedy of Errors Julius Caesar Henry VI, Part 1
Love’s Labour’s Lost King Lear Henry VI, Part 2
Measure for Measure Macbeth Henry VI, Part 3
The Merchant of Venice Othello Henry VIII
The Merry Wives of Windsor Romeo and Juliet Richard II
Much Ado About Nothing Timon of Athens Richard III
Pericles, Prince of Tyre Titus Andronicus
The Taming of the Shrew
The Tempest
Twelfth Night
The Two Gentlemen of Verona
The Winter’s Tale
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Why Shakespeare?
Idioms

2016 marks the 400th anniversary of Shakespeare’s death. He continues to have a lasting
influence on the English language:

‘A dish fit for the gods’ (Julius Caesar)
‘A foregone conclusion’ (Othello)
‘A horse, a horse, my kingdom for a horse’ (Richard III)
‘Brevity is the soul of wit’ (Hamlet)
‘Give the Devil his due’ (Henry IV)
‘Heart of gold’ (Henry V)
‘Star-crossed lovers’ (Romeo & Juliet)
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Why Shakespeare?
Humour

SECOND APPARITION: Macbeth! Macbeth! Macbeth!
MACBETH: Had I three ears, I’d hear thee.
SECOND APPARITION: Be bloody, bold, and resolute.

Laugh to scorn the power of Man, for none of woman born
shall harm Macbeth.

— Macbeth, Act IV, Scene I
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Disclaimer

I’m a linguistic barbarian. Please correct me if what I am telling you makes absolutely no
sense or is in direct opposition to linguistic research.
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Motivation

Stories appear to follow some basic patterns. We all know certain tropes that appear and
re-appear.

J. Campbell, The Hero with a Thousand Faces: Myths from around the world share
the same narrative structure.
K. Vonnegut, The Shapes of Stories: By graphing the ‘ups’ and ‘downs’ of a character,
the story reveals its shape.
A. J. Reagan, The emotional arcs of stories are dominated by six basic shapes: Many
stories share the same ‘emotional arcs’.
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Motivation

How can we measure structural similarities between Shakespeare’s plays in a
mathematically sound way?
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How to represent a story?

Create a social network—a graph—from the play
Every character becomes a vertex in the graph
If two characters talk in the same scene, connect them by an edge
Data source: Tagged corpus1

Using conversion scripts by Ingo Kleiber2,3

1http://lexically.net/wordsmith/support/shakespeare.html
2https://kleiber.me
3https://github.com/IngoKl/shakespearesna1406
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Example

<SCENE 1>
<A desert Heath.>
<STAGE DIR>
<Thunder and lightning. Enter three Witches.>
</STAGE DIR>
<WITCH 1><0%>

When shall we three meet again
In thunder, lightning, or in rain?

</WITCH 1>

<WITCH 2><1%>
When the hurlyburly's done,
When the battle's lost and won.

</WITCH 2>

<WITCH 3><1%>
That will be ere the set of sun.

</WITCH 3>

<WITCH 1><1%>
Where the place?

</WITCH 1>

<WITCH 2><1%>
Upon the heath.

</WITCH 2>

<WITCH 3><1%>
There to meet with Macbeth.

</WITCH 3>

<WITCH 1><1%>
I come, Graymalkin!

</WITCH 1>

<WITCH 2><1%>
Paddock calls.

</WITCH 2>

<WITCH 3><1%>
Anon.

</WITCH 3>

<ALL><1%>
Fair is foul, and foul is fair:
Hover through the fog and filthy air.

</ALL>
<STAGE DIR>
<Exeunt.>
</STAGE DIR>

</SCENE 1>

Witch 1

Witch 2

Witch 3
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For larger graphs

Use force-directed graph layout algorithms
Scale node by its degree
Assign edge weights based on the number of common scenes
Colour & scale edges by their weight
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A Midsummer Night’s Dream
Comedy

All Four

Bottom

Cobweb

Demetrius

Egeus

Fairy

Flute

Helena

Hermia

Hippolyta

Lion

Lysander
Moonshine

Moth

Oberon

Philostrate

Puck

Pyramus

Quince

Snout

Snug

Starvelingeseus

isbe

Titania

Wall
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Macbeth
Tragedy

Angus

Apparition 1

Apparition 2

Apparition 3

Attendant

Banquo

Caithness

Doctor

Donalbain

Duncan

Fleance

Gentlewoman

Hecate

Lady Macbeth

Lennox

Lord

Lords

Macbeth

Macduff

Malcolm
Menteith

Messenger

Murderer

Murderer 1
Murderer 2

Murderer 3

Old Man

Porter

Ross
Sergeant

ServantSeyton

Siward

Soldier

Son

Witch 1
Witch 2

Witch 3

Young Siward
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Henry V
History

Alice

Ambassador 1

Bardolph

Bates

Bedford

Bourbon

Boy

Burgundy

Cambridge

Canterbury

Constable

Court

Dauphin

Ely

Erpingham

Exeter

Fluellen

Fr. Soldier

French King

Gloucester

Governor

Gower
Grey

Herald

Hostess

Jamy

K. Henry

Katharine

Macmorris

Messenger

Montjoy

Nym

Orleans

Pistol

Q. Isabel

Rambures

Salisbury

Scroop

Warwick

Westmoreland

Williams

York
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So far

Some apparent structural differences—but how to quantify them correctly? Are they an
artefact of the layout algorithm?
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Measuring structural properties, I
Simple properties

Density : How different is the graph from a complete graph on n vertices?
Diameter: How long is the longest shortest path?

0.4 0.6 0.8

1.5

2

2.5

Density

D
ia

m
et

er

Bastian Rieck Shakespearean Social Network Analysis using Topological Methods 15



Measuring structural properties, I
Simple properties

Density : How different is the graph from a complete graph on n vertices?
Diameter: How long is the longest shortest path?

0.4 0.6 0.8

1.5

2

2.5

Density

D
ia

m
et

er

Comedy
History
Tragedy

Bastian Rieck Shakespearean Social Network Analysis using Topological Methods 15



What can we make of this?

Histories have a low density and a medium diameter: Characters talk in smaller
groups; groups are somewhat removed from each other
Comedies have a high density and a low–medium diameter: Characters talk in larger
groups; ‘Much Ado about Nothing’ and ‘The Merry Wives of Windsor’ have a very
high cohesion, i.e. a small diameter, while ‘Measure for Measure’ has a very loose
cohesion
‘Measure for Measure’ is one of Shakespeare’s problem plays because it has a rather
complex and ambiguous tone

Very ‘coarse’ measures, but still interesting.
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Measuring structural properties, II
Centrality measures

Betweenness centrality: What fraction of all shortest paths within the graph use the
current vertex?
Closeness centrality: How far removed is the current vertex from the remaining
vertices?
Eigenvector centrality: Perform an eigenanalysis of the weighted adjacency matrix
and use the components of the eigenvector corresponding to the largest eigenvector
Weighted degree centrality: Use the sum of all weights of incident edges
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Slightly different notions of ‘centrality’
The Tempest
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How to compare centrality measures mathematically?
Betweenness centrality distribution

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

A Midsummer Night’s Dream

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Macbeth

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Henry V

Histogram distance measures (χ 2, Kullback–Leibler, . . . ), Euclidean distance, Earth
Mover’s distance, . . .
However: Low discriminative power in the context of networks!
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How to increase the discriminative power?
Persistent homology

Take structural features of the graph into account
In particular, let’s focus on the connectivity of the graph
Natural problem for topological data analysis
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How does this work?

Given a graph G, decompose it via a graph filtration,

;=G0 ⊆G1 ⊆ · · · ⊆Gn =G, (1)

and study how the connectivity of the graph changes. In particular, we are interested in
connected components and loops.

β0 = 8, β1 = 0 β0 = 6, β1 = 0 β0 = 4, β1 = 0 β0 = 1, β1 = 1

Key idea: If every graph in the filtration has a weight function assigned, we may measure
how long structural features persist over the range of the function!
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Collecting scale information
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Why persistence diagrams?

Salient shape descriptor for high-dimensional data sets
Known stability & robustness results4

Well-defined distance measures: Bottleneck distance, Wasserstein distance5

Vector space formulation is possible—averages can be calculated!

p-norm summary statistic:

‖D‖2 :=

 

∑

(c ,d )∈D
pers(c , d )p

!
1
p

(2)

4Cohen-Steiner et al.: Stability of Persistence Diagrams, Discrete & Computational Geometry 37:1, 2007
5Essentially, an Earth Mover’s Distances between diagrams
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Filtrations
Graph distances

f (v) := 0 (3)

f (u, v) :=
1

w(u, v)
(4)

Properties:
Naturally models a metric on the graph
The distance is inversely proportional to the edge weight—characters that appear
together in many scenes are considered to be close
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Results
Graph distances
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Results
Graph distances
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Results
Graph distances

Comedy
History
Tragedy

Embedding
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Results
Graph distances

Pericles, Prince of Tyre

Coriolanus
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Filtrations
Centrality measures, merged

Let c(v) denote a vertex-based centrality measure. Set weights to:

f (v) := c(v) (5)
f (u, v) :=max(c(u), c(v)) (6)

Properties:
Function-based filtration; is able to capture the shape of networks slightly better6

Affords calculation of extended persistence
However, this does not model a metric!
Merge corresponding persistence diagrams; simple bag-of-features approach

6Carlsson: Topological Pattern Recognition for Point Cloud Data, Acta Numerica 23, 2014
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Results
Centrality measures, merged
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Results
Centrality measures, merged

All’s Well that Ends Well

Measure for Measure

Troilus and Cressida

Comedy
History
Tragedy

The ‘problem plays’
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Results
Centrality measures, merged

Richard II

Henry IV, Part 1

Henry IV, Part 2

Henry V

Comedy
History
Tragedy

Structural changes in the Henriad
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Filtrations
Centrality measures, mixed

Let c(v) denote a vertex-based centrality measure. Set weights to:

f (v) := 0 (7)
f (u, v) :=max(c(u), c(v)) (8)

Properties:
Pretend that c(v) describes a metric
By setting vertex weights to 0, more information about merges is retained
Somewhat unjustified. . .
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Results
Centrality measures, mixed (eigenvector centrality)

Comedy
History
Tragedy

Bastian Rieck Shakespearean Social Network Analysis using Topological Methods 29



Conclusion & outlook

Lots of structural, discriminative information available
Robust topological analysis yields some (simple) insights
Does a similar topology imply a similar story?
Everything hinges on the definition of the graph. . .

Inclusion of sentiment analysis
Graph filtration based on temporal evolution of the play

Applications:
Recommending a play; comparing plays of different authors to Shakespeare’s plays
Quantifying dissimilarity between different editions

‘Bard Data’ instead of ‘Big Data’?
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