Abstract simplicial complex

Simplicial complex

A simplicial complex \mathcal{C} is a set of finite sets such that if $\sigma \in \mathcal{C}$ and $\tau \subseteq \sigma$ then $\tau \in \mathcal{C}$. For every $\tau \subseteq \sigma \in \mathcal{C}$, the set τ is a face of σ, whereas σ is a coface of τ.

k-simplex

$\sigma \in \mathcal{C}$ with $|\sigma|=k+1$ is called a k-simplex.

Orientation

An orientation of k-simplices is an equivalence class of orderings where two simplices are considered equal if the permutation has a sign of 1 .

Geometric realization

■ Realize a k-simplex as the convex hull of $k+1$ affinely independent points in some \mathbb{R}^{d}, with $d \geq k$.
■ Need to ensure that the simplicess only intersect along shared faces.

- Geometric intuition:

0 -simplices vertices
1-simplices edges
2-simplices triangles
3-simplices tetrahedra

Not interested in that.

Chain group

k th chain group

The k th chain group C_{k} of \mathcal{C} is the free abelian group on the set of oriented k-simplices. The group contains all abstract combinations of oriented k-simplices with coefficients from either a field or a principal ideal domain.
$c \in C_{k}$ is a k-chain, i.e.

$$
c=\sum_{i} \lambda_{i}\left[\sigma_{i}\right]
$$

with $\lambda_{i} \in \mathbb{Z}$, for example, and $\sigma_{i} \in \mathcal{C}$.

Boundary operator

The k th boundary operator $\partial_{k}: C_{k} \rightarrow C_{k-1}$ is a homomorphism whose action on a chain c is defined on a simplex $\sigma=\left[v_{0}, v_{1}, \ldots, v_{k}\right]$ by

$$
\partial_{k} \sigma=\sum_{i}(-1)^{i}\left[v_{0}, v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{k}\right]
$$

where \hat{v}_{i} signifies that the i th vertex is removed from the chain.

Chain complex and subgroups

The boundary operators connect the chain groups of different dimensions. This forms a chain complex, i.e.

$$
\cdots \rightarrow C_{k+1} \rightarrow C_{k} \rightarrow C_{k-1} \rightarrow \ldots
$$

Subgroups of C_{k}

We have the cycle group $Z_{k}=\operatorname{ker} \partial_{k}$ (mnemonic: "Zykel") and the boundary group $B_{k}=\operatorname{im} \partial_{k+1}$. Since $\partial_{k} \partial_{k+1}=0$, the subgroups are nested:

$$
B_{k} \subseteq Z_{k} \subseteq C_{k}
$$

Homology

k th homology group

$$
H_{k}=Z_{k} / B_{k}
$$

This is well-defined because the subgroups are nested. The elements of the k th homology group are classes of homologous cycles. If the coefficients are taken from a field \mathbb{F} then H_{k} becomes a vector space.

Betti numbers

$$
\beta_{k}=\operatorname{rank} H_{k}
$$

- β_{0} is the number of connected components
- β_{1} is the number of 2-dimensional holes (circles)
- β_{2} is the number of 3-dimensional holes (voids)

Homology is useful

- Invariants of topological spaces

■ "Homology googles" to distinguish different spaces from one another

Classical example

	Möbius strip	Torus
H_{0}	\mathbb{Z}	\mathbb{Z}
H_{1}	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$
H_{2}	0	\mathbb{Z}

Input data

Assumption

The input data is given as a high-dimensional point cloud. There is some kind of metric, i.e. Euclidean distance.

Goal

Identify "interesting" topological structures in the data-especially relevant for time series data.

How to obtain a simplicial complex?

- Use points in point cloud as vertics of a graph

■ Determine edges by proximity, i.e. take all vertices situated within a distance of ϵ

- This yields the neighbourhood graph N_{ϵ}

■ Expand the graph afterwards

Chěch complex

Topologically faithful but very hard to compute. Relies on precise distances.

Vietoris-Rips complex

Less expensive calculation but possibly different homotopy type, i.e. we may not "see" what we want to see.

How to choose ϵ ?

Figure: $\epsilon=0.013$

Figure: $\epsilon=0.019$

Persistent homology

■ Need to distinguish between "essential" and "non-essential" holes

- Question of "optimal" values for ϵ is a mistake

Idea

Do all computations for a large range of parameter values for ϵ. Features that persist over the course of varying the parameter are likely to be "real" topological features.

Visualization

Figure: Default "barcode" visualization taken from [1].

Workflow (so far)

Current status of my work

- Literature survey; we need to know the state of the art

■ Implemented algorithms for constructing the Vietoris-Rips complex [2]

- Started working on implementation of persistent homology calculation [3]

Problems

- Complexes are very large
- Calculations are slow
- Not many applications out there (this may be a good thing)

Roadmap

■ Even more literature survey
■ Examination of some data sets-how can we profit from these methods?

■ Try approximations to topology (sometimes we know the topology of the underlying space)
■ Rather vague: Use domain knowledge

Possible applications

- Time-series data
- Clustered data

■?

- Robert Ghrist.

Barcodes: The persistent topology of data.
Bulletin of the American Mathematical Society, 45:61-75, 2008.

- Afra Zomorodian.

Fast construction of the Vietoris-Rips complex.
Computers \& Graphics, 34(3):263-271, 2010.

- Afra Zomorodian and Gunnar Carlsson.

Computing persistent homology.
Discrete and Computational Geometry, 33(2):249-274, 2005.

