Abstract simplicial complex

Simplicial complex

A simplicial complex C is a set of finite sets such that if $\sigma \in C$ and $\tau \subseteq \sigma$ then $\tau \in C$. For every $\tau \subseteq \sigma \in C$, the set τ is a face of σ , whereas σ is a coface of τ .

k-simplex

 $\sigma \in \mathcal{C}$ with $|\sigma| = k + 1$ is called a *k*-simplex.

Orientation

An *orientation* of k-simplices is an equivalence class of orderings where two simplices are considered equal if the permutation has a sign of 1.

Geometric realization

- Realize a k-simplex as the convex hull of k + 1 affinely independent points in some \mathbb{R}^d , with $d \ge k$.
- Need to ensure that the simplicess only intersect along *shared faces*.
- Geometric intuition:

0-simplices vertices1-simplices edges2-simplices triangles3-simplices tetrahedra

Not interested in that.

Chain group

kth chain group

The *k*th chain group C_k of C is the free abelian group on the set of oriented *k*-simplices. The group contains all abstract combinations of oriented *k*-simplices with coefficients from either a field or a principal ideal domain.

 $c \in C_k$ is a *k*-chain, i.e.

$$c = \sum_i \lambda_i [\sigma_i],$$

with $\lambda_i \in \mathbb{Z}$, for example, and $\sigma_i \in \mathcal{C}$.

Boundary operator

The *k*th boundary operator $\partial_k : C_k \to C_{k-1}$ is a homomorphism whose action on a chain *c* is defined on a simplex $\sigma = [v_0, v_1, \dots, v_k]$ by

$$\partial_k \sigma = \sum_i (-1)^i [v_0, v_1, \dots, \hat{v}_i, \dots, v_k],$$

where \hat{v}_i signifies that the *i*th vertex is removed from the chain.

Chain complex and subgroups

The boundary operators connect the chain groups of different dimensions. This forms a *chain complex*, i.e.

$$\cdots \rightarrow C_{k+1} \rightarrow C_k \rightarrow C_{k-1} \rightarrow \ldots$$

Subgroups of C_k

We have the cycle group $Z_k = \ker \partial_k$ (mnemonic: "Zykel") and the boundary group $B_k = \operatorname{im} \partial_{k+1}$. Since $\partial_k \partial_{k+1} = 0$, the subgroups are nested:

$$B_k \subseteq Z_k \subseteq C_k$$

Homology

kth homology group

$$H_k = Z_k/B_k$$

This is well-defined because the subgroups are nested. The elements of the *k*th homology group are classes of *homologous cycles*. If the coefficients are taken from a field \mathbb{F} then H_k becomes a *vector space*.

Betti numbers

$$\beta_k = \operatorname{rank} H_k$$

- β_0 is the number of *connected components*
- β_1 is the number of 2-dimensional holes (circles)
- β_2 is the number of 3-dimensional holes (voids)

...

Homology is useful

- Invariants of topological spaces
- "Homology googles" to distinguish different spaces from one another

Classical example

Input data

Assumption

The input data is given as a high-dimensional *point cloud*. There is some kind of *metric*, i.e. Euclidean distance.

Identify "interesting" topological structures in the data—especially relevant for time series data.

How to obtain a simplicial complex?

- Use points in point cloud as vertics of a graph
- Determine edges by *proximity*, i.e. take all vertices situated within a distance of ϵ
- This yields the *neighbourhood graph* N_{ϵ}
- Expand the graph afterwards

Chěch complex

Topologically faithful but very hard to compute. Relies on *precise* distances.

Vietoris-Rips complex

Less expensive calculation but possibly different homotopy type, i.e. we may not "see" what we want to see.

How to choose ϵ ?

Figure: $\epsilon = 0.013$

Figure: $\epsilon = 0.019$

Persistent homology

- Need to distinguish between "essential" and "non-essential" holes
- Question of "optimal" values for ϵ is a mistake

Idea

Do *all* computations for a *large range* of parameter values for ϵ . Features that *persist* over the course of varying the parameter are likely to be "real" topological features.

Visualization

Figure: Default "barcode" visualization taken from [1].

Bastian Rieck (IWR)

Applied algebraic topology

Workflow (so far)

Current status of my work

- Literature survey; we need to know the state of the art
- Implemented algorithms for constructing the Vietoris-Rips complex [2]
- Started working on implementation of *persistent homology* calculation [3]

Problems

- Complexes are very large
- Calculations are slow
- Not many applications out there (this may be a good thing)

Roadmap

- Even more literature survey
- Examination of some data sets—how can we profit from these methods?
- Try approximations to topology (sometimes we know the topology of the underlying space)
- Rather vague: Use *domain knowledge*

Possible applications

- Time-series data
- Clustered data
- ∎ ?

Robert Ghrist.

Barcodes: The persistent topology of data.

Bulletin of the American Mathematical Society, 45:61–75, 2008.

Afra Zomorodian.

Fast construction of the Vietoris-Rips complex. *Computers & Graphics*, 34(3):263–271, 2010.

 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33(2):249–274, 2005.