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Motivation
What is the ‘shape’ of data?
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Agenda

1 Theory: Algebraic topology

2 Theory: Persistent homology

3 Examples
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Part I

Theory: Algebraic topology



Algebraic topology

Algebraic topology is a branch of mathematics that uses
tools from abstract algebra to study topological spaces. The
basic goal is to find algebraic invariants that classify
topological spaces up to homeomorphism […]
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Topological spaces

Manifolds

A d-dimensional Riemannian manifoldM in someRn, with d � n,
is a space where every point p ∈M has a neighbourhood that
‘locally looks’ likeRd.
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Homeomorphisms

A homeomorphism between two spaces X and Y is a continuous
function f : X → Y whose inverse f−1 : Y → X exists and is
continuous as well.

Intuitively, we may stretch, bend, but not tear the two spaces.
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Algebraic invariants

An invariant is a property of an object that remains unchanged
upon transformations such as scaling or rotations.

Examples

1 Dimension: R2 6= R3 because 2 6= 3.

2 Determinant: If matricesA and B are similar, their
determinants are equal.

In general

LetM be the family of manifolds. An invariant permits us to define
a function f : M×M → {0, 1} that tells us whether two manifolds
are different or ‘equal’ (with respect to that invariant).

No invariant is perfect—there will be objects that have the same
invariant even though they are different.
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Betti numbers
A topological invariant

Informally, they count the number of holes in different dimensions
that occur in a data set.

β0 Connected components
β1 Tunnels
β2 Voids
...

...

Space β0 β1 β2

Point 1 0 0
Circle 1 1 0
Sphere 1 0 1
Torus 1 2 1
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Signature property

If βX
i 6= βY

i , we know that X 6∼= Y. The converse is not true,
unfortunately:

Space β0 β1

X 1 1
Y 1 1

We have β0 = 1 and β1 = 1 for X and Y, but still X 6∼= Y.

But to be completely honest, the second object is technically not a manifold. This is only
meant as an illustration of the issue.
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Calculating Betti numbers

The kth Betti number βk is the rank of the kth homology
groupHk(X) of the topological space X.

Technically, I should write simplicial homology group everytime. I am not going to do this.
Instead, let’s first talk about simplicial complexes.

Bastian Rieck An introduction to persistent homology 9



Simplicial complexes

A family of sets Kwith a collection of subsets S is called an abstract
simplicial complex if:

1 {v} ∈ S for all v ∈ K.

2 If σ ∈ S and τ ⊆ σ, then τ ∈ K.

The elements of a simplicial complex are called simplices. A
k-simplex consists of k+ 1 indices.
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Simplicial complexes
Example

Valid Invalid
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Chain groups

Given a simplicial complex K, the pth chain groupCp of K contains
all linear combinations of p-simplices in the complex. Coefficients
are inZ2, hence all elements ofCp are of the form

∑
j σj, for

σj ∈ K. The group operation is addition withZ2 coefficients.

Example

{a, b, c}+ {a, b, c, d, e}

{a, b, c}+ {a, b, c}+ {a, b} = {a, b}

We need chain groups to algebraically express the concept of a
boundary.
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Basic idea
Calculating boundaries

The boundary of the triangle is:

∂2{a, b, c} = {b, c}+ {a, c}+ {a, b}

The set of edges does not have boundary:

∂1 ({b, c}+ {a, c}+ {a, b})

= {c}+ {b}+ {c}+ {a}+ {b}+ {a}

= 0
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Boundary homomorphism

Given a simplicial complex K, the pth boundary homomorphism is
the homomorphism that assigns each simplex σ = {v0, . . . , vp} ∈ K

to its boundary:

∂pσ =
∑
i

{v0, . . . , v̂i, . . . , vk} (1)

In the equation above, v̂i indicates that the set does not contain the
ith vertex. The function ∂p : Cp → Cp−1 is thus a homomorphism
between the chain groups.
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Fundamental lemma

For all p, we have ∂p−1 ◦ ∂p = 0: Boundaries do not have a boundary
themselves.
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Chain complex

0
∂n+1−−−→ Cn

∂n−−→ Cn−1
∂n−1−−−→ . . .

∂2−→ C1
∂1−→ C0

∂0−→ 0 (2)

Bastian Rieck An introduction to persistent homology 16



Cycle and boundary groups

Cycle group Zp = ker∂p (3)

Boundary group Bp = im∂p+1 (4)

We have Bp ⊆ Zp in the group-theoretical sense. In other words,
every boundary is also a cycle.
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Illustration of the nesting relations
Following Zomorodian, Edelsbrunner, and many more…
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Homology groups & Betti numbers

The pth homology groupHp is a quotient group, defined by
‘removing’ cycles that are boundaries from a higher dimension:

Hp = Zp/Bp = ker∂p/ im∂p+1, (5)

With this definition, we may finally calculate the pth Betti number:

βp = rankHp (6)

Intuitively: Calculate all boundaries, remove the boundaries that
come from higher-dimensional objects, and count what’s left.
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Summary

We want to differentiate between different objects.

This endeavour requires algebraic invariants.

One invariant, the Betti numbers, measures intuitive aspects of
our data.

Their calculation requires a simplicial complex and a boundary
operator.
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Part II

Theory: Persistent homology



Real-world multivariate data

Unstructured point clouds

n items withD attributes; n×Dmatrix

Non-random sample fromRD

Manifold hypothesis

There is an unknown d-dimensional
manifoldM ⊆ RD, with d � D, from which
our data have been sampled.

2-manifold inR3
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Agenda

1 Convert our input data into a simplicial complex K.

2 Calculate simplicial homology of K.

3 Use the Betti numbers to distinguish between different data
sets.

Fair warning: It won’t be so simple, of course...
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Converting unstructured data into a simplicial complex
Rips graphRε
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How to get a simplicial complex fromRε?

Construct the Vietoris–Rips complex Vε by adding a k-simplex
whenever all of its (k− 1)-dimensional faces are present.
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Calculating Betti numbers directly from Vε
Unstable behaviour

ε = 0.35 ε = 0.53 ε = 0.88 ε = 1.05

0.4 0.6 0.8 1

0

1

ε

β
1
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Solution: Persistent homology

Exploit the nesting properties of the Rips graph and the
Vietoris–Rips complex. For ε 6 ε′, we have:

Rε ⊆ Rε′ (7)

Vε ⊆ Vε′ (8)

Hence: Calculate ‘multi-scale Betti numbers’—observe how the
Betti numbers change with a varying distance threshold.
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Technical details

A filtration is a sequence of sets

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K (9)

such that each Ki is a valid simplicial subcomplex of K. It turns out
that we can reduce a single large boundary matrix of a complex in
filtration order to get persistent homology!

Central idea: A simplex may either increase the Betti number in a
certain dimension, decrease it, or not change it at all.

Further details: Computing Persistent Homology (Afra Zomorodian and Gunnar Carlsson), 2005.
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Persistent homology & persistence diagrams
One-dimensional example

The simplicial complex is implicitly given by connecting points that
are ‘adjacent’ on the function.

Filtration order is given by traversing function values in ascending
order. We shall observe changes in the connected components of
the sublevel sets L−c (f) = {x | f(x) 6 c} of the function.
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Persistent homology & persistence diagrams
One-dimensional example
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Connections to Morse theory
2D manifolds

Critical points are in one-to-one correspondence with points in the
persistence diagram:

Minima create new connected components
Maxima destroy connected components by merging them
Saddle points either create holes or merge two connected
components
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Uses for persistence diagrams
Distance calculations

W2(X, Y) =

√
inf

η : X→Y

∑
x∈X

‖x− η(x)‖2∞
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Stability

Theorem

Let f and g be two Lipschitz-continuous functions. There are constants
k andC that depend on the input space and on the Lipschitz constants
of f and g such that

W2(X, Y) 6 C‖f− g‖1−
k
2∞ , (10)

whereX and Y refer to the persistence diagrams of f and g.
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Part III

Examples



Scalar field analysis
Climate research
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Combined persistence diagram
1460 time steps
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Combined persistence diagram
Kernel density estimates
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Combined persistence diagram
Kernel density estimates
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What kind of questions does this answer?

What is the topology of an ‘average’ climate data scalar field?

What time steps are outliers in the topological sense?

Are two runs of a time-varying simulation similar?

Statistical view: Two-sample tests, clustering, …
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Towards topological time-series analysis
Derived properties of persistence diagrams

∞-norm:
‖D‖∞ := max

(c,d)∈D
|c− d| (11)

p-norm:

‖D‖p :=

 ∑
(c,d)∈D

(c− d)p

 1
p

(12)

Total persistence:

pers(D)p :=
∑

(c,d)∈D

(c− d)p (13)

In essence, these are topological summary statistics.
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Total persistence
p = 2
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∞-norm
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Conclusion

Take-away messages

1 Persistent homology is a new way of looking at complex data.

2 It has a rich mathematical theory and many desirable
properties (robustness, invariance).

3 Lots of interesting applications!

Interested? Drop me a line at bastian.rieck@iwr.uni-heidelberg.de!
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