HELMHOLTZ AIH Institute of AI for Health

Zoom and Enhance

Towards Multi-Scale Representations in the Life Sciences

Bastian Rieck (@Pseudomanifold)

Motivation

Warm-up

It's all about finding the right perspective!

Warm-up

It's all about finding the right perspective!

Part I: Antimicrobial Resistance Prediction

Antimicrobial resistance

Relevance

- \Rightarrow It's time to confront the pandemic of antibiotic resistance¹
- ☆ The World's Next Big Health Emergency Is Already Here²
- ☆ Millions are dying from drug-resistant infections, global report says³

https://www.ft.com/content/da746047-ecbc-4c4f-b95d-401421ce13c1

2 https://www.bloomberg.com/opinion/articles/2022-01-27/after-covid-antimicrobial-resistance-is-the-world-s-biggest-health-emergency

3 https://www.bbc.com/news/health-60058120

MALDI-TOF mass spectrometry

Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry

- Obtain a quick overview of sample microbial composition.
- ☆ Spectra are known to be *highly characteristic* of a microbial species.
- Standard tool for species identification in clinical practice.

Antimicrobial treatment workflow

AMR prediction

A tale of two pre-processing pipelines

- 1 Variance stabilisation
- 2 Smoothing
- 3 Baseline removal
- 4 Intensity calibration
- 5 Intensity trimming

State-of-the-art: S. Gibb and K. Strimmer, 'MALDIquant: a versatile R package for the analysis of mass spectrometry data', *Bioinformatics* 28.17, 2012, pp. 2270–2271 Treat spectrum as function and use the *prominence* of critical points as a proxy for the heights of a peak.

Critical points of a function

Prominence is also known as *topological persistence*, a concept from topological data analysis. See F. Hensel, M. Moor and **B. Rieck**, 'A Survey of Topological Machine Learning Methods', *Frontiers in Artificial Intelligence* 4, 2021 for a recent survey.

Critical points of a function

Prominence is also known as *topological persistence*, a concept from topological data analysis. See F. Hensel, M. Moor and **B. Rieck**, 'A Survey of Topological Machine Learning Methods', *Frontiers in Artificial Intelligence* 4, 2021 for a recent survey.

Critical points of a function

Prominence is also known as *topological persistence*, a concept from topological data analysis. See F. Hensel, M. Moor and **B. Rieck**, 'A Survey of Topological Machine Learning Methods', *Frontiers in Artificial Intelligence* 4, 2021 for a recent survey.

Higher dimensions

The calculation of topological features is also known as *persistent homology*. It results in a set of topological descriptors, the *persistence diagrams*.

Topological pre-processing

Topological pre-processing

Using spectra for machine learning tasks

- ☆ Use 'sparse' representation based on tuples

The latter part is reminiscent of M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov and A. J. Smola, 'Deep Sets', *Advances in Neural Information Processing Systems* 30, Curran Associates, Inc., 2017, pp. 3391–3401.

Towards antimicrobial resistance prediction

PIKE: Peak Information Kernel

For two spectra S and S', with m/z values x_i and x'_i and intensities λ_i and λ'_i , respectively, we calculate the following expression:

$$\mathbf{k}_t(S,S') = \frac{1}{2\sqrt{2\pi t}} \sum_{i,j} \lambda_i \lambda'_j \exp\left(-\frac{\left(x_i - x'_j\right)^2}{8t}\right)$$

Properties

- ☆ Calculate similarity based on peak 'distances'
- ☆ Interactions between peaks are captured
- \hat{v} Single parameter $t \in \mathbb{R}$ controls smoothing
- ☆ Can be easily integrated into any kernel-based model: SVM, Gaussian Processes, ...

Varying t

6 4 2 I 0 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

 $t \approx 0$

Varying t

6 4 2 0 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

t = 0.10

Varying t

6 4 2 0 -2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

t = 1

Varying *t*

6 4 2 0 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

t = 5

Varying *t*

6 4 2 0 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

Varying t

6 4 2 0 2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 $m|_{z}$

t = 50

Varying t

6 4 2 0 2,050 2,100 2,150 2,200 2,250 2,300 2,350 2,400 2,450 2,500 2,000 $m|_{z}$

t = 100

Data set

Species	Antibiotic	Samples	% resistant
E. coli	amoxicillin / clavulanic acid	1043	28.9
	ceftriaxone	1060	20.4
	ciprofloxacin	1051	29.7
K. pneumoniae	ceftriaxone	597	15.1
	ciprofloxacin	596	16.8
	piperacillin / tazobactam	576	13.9
S. aureus	amoxicillin / clavulanic acid	973	13.7
	ciprofloxacin	987	14.7
	penicillin	941	71.4

Publication

C. Weis^{*}, M. Horn^{*}, **B. Rieck**^{*}, A. Cuénod, A. Egli and K. Borgwardt, 'Topological and kernel-based microbial phenotype prediction from MALDI-TOF mass spectra', *Bioinformatics* 36.Supplement_1, 2020, pp. i30–i38

GP-PIKE: superior performance

AUPRC

Species	Antibiotic	LR	GP-RBF	GP-PIKE
E. coli	amox/clav ¹ ceftriaxone ciprofloxacin	41.0 ± 7.4 63.2 ± 6.1 61.4 ± 8.5	$\begin{array}{c} 32.5 \pm 8.5 \\ 46.3 \pm 24.0 \\ 34.7 \pm 10.7 \end{array}$	$\begin{array}{c} 47.1 \pm 3.9 \\ 70.6 \pm 3.2 \\ 68.0 \pm 3.0 \end{array}$
K. pneumoniae	ceftriaxone ciprofloxacin pip/tazo ²	$58.2 \pm 9.8 \\ 41.7 \pm 9.8 \\ 31.6 \pm 6.8$	$58.7 \pm 25.3 \\ 30.9 \pm 13.5 \\ 13.8 \pm 0.0$	$\begin{array}{c} {\bf 77.0 \pm 6.8} \\ {\bf 54.6 \pm 10.1} \\ {\bf 56.5 \pm 9.7} \end{array}$
S. aureus	amox/clav¹ ciprofloxacin penicillin	$52.9 \pm 3.9 \\ 34.1 \pm 3.3 \\ 79.7 \pm 3.3$	$\begin{array}{c} 13.9 \pm 0.0 \\ 23.3 \pm 11.9 \\ 74.2 \pm 3.2 \end{array}$	$69.2 \pm 9.2 \\ 39.4 \pm 6.6 \\ 83.2 \pm 3.5$

Advantages & disadvantages

Sparse processing and 'built-in' confidence analysis, but insufficient scalability to larger data sets. How does a model fare on larger data sets?

Bigger and better?

- 🕸 303,195 mass spectra
- 768,300 antimicrobial resistance labels
- ☆ 803 different species of bacterial and fungal pathogens
- ☆ 4 different diagnostic laboratories

Focus on *scalability* first: only using 'standard' classifiers based on 6000-dimensional feature vectors, obtained from binning the spectra.

Publication

C. Weis, A. Cuénod, **B. Rieck**, O. Dubuis, S. Graf, C. Lang, M. Oberle, M. Brackmann, K. K. Søgaard, M. Osthoff, K. Borgwardt[†] and A. Egli[†], 'Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning', *Nature Medicine* 28, 2022, pp. 164–174

Data

https://doi.org/10.5061/dryad.bzkh1899q

Results

E. coli (excerpt)

(solid: LR, dashed: LightGBM)

Results

S. aureus (excerpt)

(solid: LR, dashed: LightGBM)

Going to other sites

E. coli, AUROC

K. pneumoniae, AUROC

What is the structure of spectra from different sites?

Preliminary work

Different confounding effects at work here!

Lessons learned

- * 'Relatively simple' models (LR, LightGBM, MLP) already exhibit useful performance
- ☆ Calibration of classifiers is necessary to support rejecting samples
- ☆ Feature importance highlights interesting peaks in a spectrum

Challenges

- ☆ Domain adaptation
- ☆ Extracting features that *generalise* over time

Part II: Topology-Driven fMRI Data Analysis

fMRI data

Our approach

- ☆ Obtain stable topological summaries at different resolutions

Main advantage of this approach

Working on the 'raw' data; no auxiliary representations necessary! In particular, no *atlas* required (fewer modelling choices in total).

Publication

B. Rieck^{*} et al., 'Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence', Advances in Neural Information Processing Systems, vol. 33, Accepted as a spotlight presentation at NeurIPS (**top 3%** of all submissions), 2020, pp. 6900–6912, arXiv: 2006.07882 [q-bio.NC]

Workflow

- 155 (122 children, 33 adults) participants are being shown the film
 'Partly Cloudy'
- ☆ Continuous stimulation of participants
- 🕸 168 time steps
- No additional information about participants has been provided on purpose

Topological summaries

Persistence diagrams

Topological summaries

Topological summaries

Summary statistics

Age prediction based on summary statistics

Method	BM	ОМ	ХМ
baseline-tt	0.09	0.02	0.24
baseline-pp	0.41	0.40	0.40
tt-corr-tda	0.17	0.11	0.23
pp-corr-tda	0.25	0.27	0.23
srm	0.44		
$\ \mathcal{D}\ _1$	0.46	0.67	0.48
$\ \mathscr{D}\ _{\infty}$	0.61	0.77	0.73

Brain state trajectories

Summary

- ☆ Topological features capture salient information about participants
- ☆ Want to extend this to larger and more complex data sets
- ☆ Interesting challenge: how to obtain noise-impervious representations?

Topology can provide a useful set of inductive biases for uncovering salient features at different resolutions, *without* imposing strong restrictions on the representation of the data.

Acknowledgements

ETH Zurich

Christian Bock Karsten Borgwardt Felix Hensel Michael Moor Caroline Weis

Basel University

Aline Cuénod Adrian Egli

Université de Montréal

Guy Wolf

Yale University

Smita Krishnaswamy

Nick Turk-Browne

Tristan Yates

Funding

Swiss National Science Foundation

A special 'Thank you' to all open-source contributors for making science possible.