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Persistent homology
Vietoris–Rips complex calculation
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Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less

than or equal to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for

each pairwise intersection.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 2/32



Distances between persistence diagrams

W∞(D1,D2) := inf
η : D1→D2

sup
x∈D1

‖x − η(x)‖∞

Bottleneck distance
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Stability theorem
Robustness to small-scale perturbations

LetM be a triangulable space with continuous tame functions f , g : M → R. Then

the corresponding persistence diagrams satisfy W∞
(
D f ,Dg

)
≤ ‖ f − g‖∞.
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Implications for machine learning

Need to be careful when working with mini-batches M̃ of a point cloudM. As an

example, consider a point cloud with 100 points (normally-distributed in R2) and 50
subsamples of varying size m.
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Bridging the chasm

• Persistent homology is inherently discrete

• Deep learning is inherently continuous

Challenge

Can we make the calculation of a persistence diagram differentiable, in particular if

we have some control over the input spaceM?
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First approach
Continuation of Point Clouds via Persistence Diagrams (M. Gameiro et al.)

Continuation of Point Clouds via Persistence Diagrams

Marcio Gameiroa, Yasuaki Hiraokab, Ippei Obayashib

aInstituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São
Carlos, SP, Brazil

bWPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai,
980-8577 Japan

Abstract

In this paper, we present a mathematical and algorithmic framework for the continuation of point clouds
by persistence diagrams. A key property used in the method is that the persistence map, which assigns
a persistence diagram to a point cloud, is differentiable. This allows us to apply the Newton-Raphson
continuation method in this setting. Given an original point cloud P , its persistence diagram D, and a
target persistence diagram D′, we gradually move from D to D′, by successively computing intermediate
point clouds until we finally find a point cloud P ′ having D′ as its persistence diagram. Our method can be
applied to a wide variety of situations in topological data analysis where it is necessary to solve an inverse
problem, from persistence diagrams to point cloud data.

Keywords: Point Cloud, Persistent Homology, Persistence Diagram, Continuation

1. Introduction

Let P be a finite set of points in RL given by

P = {ui ∈ RL ∣ i = 1 . . . ,M}. (1.1)

We call P a point cloud, following the convention in
topological data analysis (TDA) [1, 2]. TDA pro-
vides us tools to study the “shape” of P . Among
them, persistent homology [3, 4] is one of the most
useful tools, and it is now applied into various prac-
tical applications, e.g., amorphous solids [5, 6], pro-
teins [7], and sensor networks [8] (see also [1] and
references therein).

Persistent homology can be regarded as a collec-
tion of maps, called persistence maps in this paper,
from P to a finite set D`, for ` = 0,1,⋯, in the ex-
tended plane R̄2 = R̄×R̄, where R̄ = R∪{∞}. The set
D` is called persistence diagram and it encodes the
`-dimensional topological features of P with met-
ric information (precise definitions are given in Sec-
tion 2.3).

Email addresses: gameiro@icmc.usp.br (Marcio
Gameiro), hiraoka@wpi-aimr.tohoku.ac.jp (Yasuaki
Hiraoka), ippei.obayashi.d8@tohoku.ac.jp (Ippei
Obayashi)

In many applications, the point cloud P have an
intricate “shape” or structure, and, in this situa-
tions, persistence diagrams are used to provide the
“essential” topological features of P . For exam-
ple, in the papers [5, 6], the authors study hier-
archical geometric structures in several amorphous
solids. In such a case, P is given by an atomic
configuration of an amorphous solid and consists of
thousands of points in R3 obtained by molecular
dynamics simulations. It is a difficult task to di-
rectly study the geometry and physical properties
of the amorphous solid from P due to its immense
size. Hence, a key observation of their work is that
the persistence diagrams of the atomic configura-
tions can capture essential geometric information of
the amorphous solids. From this significant prop-
erty, using persistence diagrams they obtain various
physical properties of the solid, such as, finding new
hierarchical ring structures, decompositions of first
sharp diffraction peaks, mechanical responses, etc.

Figure 1 shows a schematic representation of
D1 for silica glass, P , studied in [5] (this corre-
sponds to Figure 1 in that paper). They show
that the presence of curves in D1 precisely distin-
guishes the amorphous state from liquid and crys-
talline states. It means that the normal direc-

Preprint submitted to Elsevier June 11, 2015
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1 Represent persistent homology calculation as a single map

of the form

Rn 3 x 7→ y ∈ Rm,

where x is a point cloud and y is a vectorised sequence of

persistence diagrams.

2 Show that this map decomposes into

x
g7−−→ r h7−−→ y,

where g calculates a filtration, and h calculates its

persistence diagrams.

3 Show that g and h are differentiable, thus implying that

f := h ◦ g is differentiable.
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Second approach
Topological Function Optimization for Continuous ShapeMatching (A. Poulenard et al.)

Eurographics Symposium on Geometry Processing 2018
T. Ju and A. Vaxman
(Guest Editors)

Volume 37 (2018), Number 5

Topological Function Optimization for
Continuous Shape Matching

Adrien Poulenard1, Primoz Skraba2, Maks Ovsjanikov1

1LIX, Ecole Polytechnique, CNRS, 2Jozef Stefan Institute

Abstract
We present a novel approach for optimizing real-valued functions based on a wide range of topological criteria. In particular,
we show how to modify a given function in order to remove topological noise and to exhibit prescribed topological features.
Our method is based on using the previously-proposed persistence diagrams associated with real-valued functions, and on
the analysis of the derivatives of these diagrams with respect to changes in the function values. This analysis allows us to
use continuous optimization techniques to modify a given function, while optimizing an energy based purely on the values in
the persistence diagrams. We also present a procedure for aligning persistence diagrams of functions on different domains,
without requiring a mapping between them. Finally, we demonstrate the utility of these constructions in the context of the
functional map framework, by first giving a characterization of functional maps that are associated with continuous point-to-
point correspondences, directly in the functional domain, and then by presenting an optimization scheme that helps to promote
the continuity of functional maps, when expressed in the reduced basis, without imposing any restrictions on metric distortion.
We demonstrate that our approach is efficient and can lead to improvement in the accuracy of maps computed in practice.

1. Introduction

A core problem in geometry processing consists in quantify-
ing similarity between shapes and their parts, as well as detect-
ing detailed region or point-based correspondences [VKZHCO11,
TCL∗13, BCBB16]. A common approach for both shape compari-
son and correspondence consists in computing real-valued (for ex-
ample, descriptor) functions defined on the shapes and comparing
the shapes and their parts by comparing the values of such func-
tions. This includes both computing correspondences by matching
in descriptor space, and also, more recently, by computing linear
transformations between spaces of real-valued functions using the
so-called functional map framework [OBCS∗12, OCB∗17].

Many existing techniques for comparison of functions on the
shapes directly rely on comparing function values, without analyz-
ing the global structure of the functions involved. For example, a
descriptor function computed on one shape can have several promi-
nent maxima, whereas on another shape, it can be uniform or with
low variance. Intuitively, pairs of functions with dissimilar struc-
tural properties can lead to large errors in the correspondence com-
putation. This problem is especially prominent in the context of
functional maps which are linear transformations between spaces
of real-valued functions defined on different shapes. In this case,
one is often interested in formulating an objective which would
promote mapping indicator functions of connected regions to other
such indicator functions without knowing in advance which regions
should match. At a high level, such an objective should promote the

preservation of the topological structure of the functions before and
after the mapping.

In this paper, we show how such problems can be solved by ef-
ficiently optimizing the topological structure of real-valued func-
tions defined on the shapes, either independently (to promote cer-
tain structural properties), or jointly (to enforce similarity between
such properties), without resorting to combinatorial search or point-
to-point maps. The key to our approach is the manipulation of per-
sistence diagrams [CZCG05, Car09]. These diagrams have been
shown to summarize the properties of very general classes of topo-
logical spaces, including, most relevant to us, real-valued func-
tions defined on the surfaces, and also enjoy several key prop-
erties such as being stable under a broad range of perturbations
[CSEH07, CCSG∗09]. Existing methods, however, concentrate on
either efficiently constructing persistence diagrams from a given
signal [CZCG05, MMS11, CK13] or using them as a tool for, e.g.
shape or image comparison [CZCG05,LOC14] or shape segmenta-
tion [SOCG10] among many others.

Our main insight is that it is possible to formulate optimization
objectives on the persistence diagrams of real-valued functions, re-
gardless of their underlying spatial domain, and to optimize a given
function to improve such objectives, via continuous non-linear op-
timization. For this, we first show, how the derivative of a persis-
tence diagram of a function can be computed with respect to the
change in the function values, and then how this computation can
be used to efficiently optimize various energies defined on persis-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

• Introduced in the context of analysing a scalar-valued

function over a point cloud.

• Applications for shape matching or function simplification.

• Simpler proof of local differentiability!
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Sketch of the proof
Terminology

• Let f : M → R be a function on a point cloud. Persistent homology can be seen

as a map from (M, f ) to {(ci, di)}i∈I .

• Let S be a map from points in the persistence diagram to pairs of simplices, i.e.

S(ci, di) = (σi, τi). We write S(·) to denote the map for a single point.

• Depending on the filtration, we can also map a simplex to one of its vertices. For

the sublevel set filtration, for example, we have a map V with

V(σ) := arg maxv∈σ f (v).
• Finally, let P := (Pc,Pd), with Pc := V ◦ S(ci) and Pd := V ◦ S(di).

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 9/32



Sketch of the proof
Example
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We have S(0, 4) = ({a}, {a, b}).

We have V({a}) = x3 and V({a, b}) = x4.

We have P(0, 4) = (V ◦ S)(0, 4) = (x3, x4).
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Sketch of the proof, continued

• If the function values are distinct, then P is unique.

• If the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on θ = (θ1, θ2, . . . ). We then have f (Pc(ci)) = ci, and, since

P is constant,
∂ci

∂θj
=

∂ f (Pc(ci))

∂θj
=

∂ f (vi)

∂θj
=

∂ f
∂θj

(vi),

i.e. the partial derivative is equivalent to the derivative of the function evaluated at

the image of the map Pc.

It is a little bit more complicated when using distances instead of scalar-valued filtrations, but the

principle remains the same.
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Topological autoencoders

Topological Autoencoders

Michael Moor † 1 2 Max Horn † 1 2 Bastian Rieck ‡ 1 2 Karsten Borgwardt ‡ 1 2

Abstract

We propose a novel approach for preserving topo-
logical structures of the input space in latent rep-
resentations of autoencoders. Using persistent ho-
mology, a technique from topological data analy-
sis, we calculate topological signatures of both the
input and latent space to derive a topological loss
term. Under weak theoretical assumptions, we
construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale con-
nectivity information. We show that our approach
is theoretically well-founded and that it exhibits
favourable latent representations on a synthetic
manifold as well as on real-world image data sets,
while preserving low reconstruction errors.

1. Introduction
While topological features, in particular multi-scale features
derived from persistent homology, have seen increasing use
in the machine learning community (Carrière et al., 2019,
Guss & Salakhutdinov, 2018, Hofer et al., 2017, 2019a,b,
Ramamurthy et al., 2019, Reininghaus et al., 2015, Rieck
et al., 2019a,b), employing topology directly as a constraint
for modern deep learning methods remains a challenge. This
is due to the inherently discrete nature of these computa-
tions, making backpropagation through the computation of
topological signatures immensely difficult or only possible
in certain special circumstances (Chen et al., 2019, Hofer
et al., 2019a, Poulenard et al., 2018).

This work presents a novel approach that permits obtaining
gradients during the computation of topological signatures.
This makes it possible to employ topological constraints
while training deep neural networks, as well as building
topology-preserving autoencoders. Specifically, we make

†Equal contribution. ‡These authors jointly directed this
work. 1Department of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland 2SIB Swiss Institute of Bioin-
formatics, Switzerland. Correspondence to: Karsten Borgwardt
<karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the following contributions:

1. We develop a new topological loss term for autoen-
coders that helps harmonise the topology of the data
space with the topology of the latent space.

2. We prove that our approach is stable on the level of
mini-batches, resulting in suitable approximations of
the persistent homology of a data set.

3. We empirically demonstrate that our loss term aids
in dimensionality reduction by preserving topological
structures in data sets; in particular, the learned latent
representations are useful in that the preservation of
topological structures can improve interpretability.

2. Background: Persistent Homology
Persistent homology (Barannikov, 1994, Edelsbrunner &
Harer, 2008) is a method from the field of computational
topology, which develops tools for analysing topological fea-
tures (connectivity-based features such as connected com-
ponents) of data sets. We first introduce the underlying
concept of simplicial homology. For a simplicial complex
K, i.e. a generalised graph with higher-order connectivity
information such as cliques, simplicial homology employs
matrix reduction algorithms to assign K a family of groups,
the homology groups. The dth homology group Hd(K) of
K contains d-dimensional topological features, such as con-
nected components (d = 0), cycles/tunnels (d = 1), and
voids (d = 2). Homology groups are typically summarised
by their ranks, thereby obtaining a simple invariant “signa-
ture” of a manifold. For example, a circle in R2 has one
feature with d = 1 (a cycle), and one feature with d = 0 (a
connected component).

In practice, the underlying manifoldM is unknown and we
are working with a point cloud X := {x1, . . . , xn} ⊆ Rd
and a metric dist : X × X → R such as the Euclidean
distance. Persistent homology extends simplicial homol-
ogy to this setting: instead of approximatingM by means
of a single simplicial complex, which would be an unsta-
ble procedure due to the discrete nature of X , persistent
homology tracks changes in the homology groups over mul-
tiple scales of the metric. This is achieved by construct-
ing a special simplicial complex, the Vietoris–Rips com-
plex (Vietoris, 1927). For 0 ≤ ε < ∞, the Vietoris–Rips
complex of X at scale ε, denoted by Rε(X), contains all

Michael Moor Max Horn Karsten Borgwardt
�Michael_D_Moor �ExpectationMax �kmborgwardt
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Topological autoencoders
Motivation
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Topological autoencoders
Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ε

ε

ε

ε
Topological loss
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Topological autoencoders
Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss

function!

Why this works in theory

Let X be a point cloud of cardinality n and X(m) be one subsample of X of cardinality

m, i.e. X(m) ⊆ X, sampled without replacement. We can bound the probability of the

persistence diagrams of X(m) exceeding a threshold in terms of the bottleneck

distance as

P
(

W∞

(
DX,DX(m)

)
>ε
)
≤ P

(
distH

(
X, X(m)

)
>2ε

)
,

where distH denotes the Hausdorff distance. In other words: mini-batches are

topologically similar if the subsampling is not too coarse.
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Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0



0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

ε

ε

Every point in the persistence diagram can be mapped to one entry in the distance

matrix! Each entry is a distance, so it can be changed during training (at least in the

latent space).
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Topological autoencoders
Loss term

Lt := LX→Z +LZ→X

LX→Z := 1
2

∥∥AX[πX]− AZ[πX]∥∥2 LZ→X := 1
2

∥∥AZ[πZ]− AX[πZ]∥∥2

• X : input space

• Z : latent space

• AX: distances in input mini-batch

• AZ: distances in latent mini-batch

• πX: persistence pairing of input mini-batch

• πZ: persistence pairing of latent mini-batch

The loss is bi-directional!
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Qualitative evaluation
‘Spheres’ data set

PCA UMAP Autoencoder

Isomap t-SNE Topological autoencoder

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 18/32



Qualitative evaluation
‘Spheres’ data set; zooming in…

Autoencoder Topological autoencoder
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Qualitative evaluation
‘FashionMNIST’ data set

PCA UMAP Autoencoder

t-SNE Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

fXσ (x) := ∑
y∈X

exp
(
−σ−1 dist(x, y)2

)
,

where dist denotes a metric such as the Euclidean distance. This is well-defined on

mini-batches and on the full input data set.

Given σ, we evaluate KLσ := KL
(

f X
σ ‖ f Z

σ

)
, which measures the similarity between

the two density distributions.
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Quantitative evaluation

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE MSE (data)

‘Spheres’

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4

PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610

t-SNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1

UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3

AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155

TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

‘Fashion-MNIST’

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844

t-SNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3

UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7

AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020

TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

‘MNIST’

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227

t-SNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9

UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6

AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373

TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388
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Topological autoencoders
Summary

• A simple way to preserve topological information of the input space for

dimensionality reduction tasks

• Our loss term is differentiable under mild theoretical assumptions

• We only need distances to train (simple extension to other structured data sets?)
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Learning graph filtrations

Graph Filtration Learning

Christoph D. Hofer 1 Florian Graf 1 Bastian Rieck 2 Marc Niethammer 3 Roland Kwitt 1

Abstract

We propose an approach to learning with graph-
structured data in the problem domain of graph
classification. In particular, we present a novel
type of readout operation to aggregate node fea-
tures into a graph-level representation. To this
end, we leverage persistent homology computed
via a real-valued, learnable, filter function. We es-
tablish the theoretical foundation for differentiat-
ing through the persistent homology computation.
Empirically, we show that this type of readout
operation compares favorably to previous tech-
niques, especially when the graph connectivity
structure is informative for the learning problem.

1. Introduction
We consider the task of learning a function from the space
of (finite) undirected graphs, G, to a (discrete/continuous)
target domain Y. Additionally, graphs might have discrete,
or continuous attributes attached to each node. Prominent
examples for this class of learning problem appear in the
context of classifying molecule structures, chemical com-
pounds or social networks.

A substantial amount of research has been devoted to de-
veloping techniques for supervised learning with graph-
structured data, ranging from kernel-based methods (Sher-
vashidze et al., 2009; 2011; Feragen et al., 2013; Kriege
et al., 2016), to more recent approaches based on graph
neural networks (GNN) (Scarselli et al., 2009; Hamilton
et al., 2017; Zhang et al., 2018b; Morris et al., 2019; Xu
et al., 2019; Ying et al., 2018). Most of the latter works use
an iterative message passing scheme (Gilmer et al., 2017)
to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This

1Department of Computer Science, Univ. of Salzburg,
Austria 2Department of Biosystems Science and Engineer-
ing, ETH Zurich, Switzerland 3Univ. of North Carolina,
Chapel Hill, USA. Correspondence to: Christoph D. Hofer
<chr.dav.hofer@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).
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Figure 1. Overview of the proposed homological readout. Given a
graph/simplicial complex, we use a vertex-based graph functional
f to assign a real-valued score to each node. A practical choice
is to implement f as a GNN, with one level of message passing.
We then compute persistence barcodes, Bk, using the filtration
induced by f . Finally, barcodes are fed through a vectorization
scheme V and passed to a classifier (e.g., an MLP). Our approach
allows passing a learning signal through the persistent homology
computation, allowing to optimize f for the classification task.

aggregation step is typically referred to as a readout opera-
tion. While research has mostly focused on variants of the
message passing function, the readout step may have a sig-
nificant impact, as it aims to capture properties of the entire
graph. Importantly, both simple and more refined readout
operations, such as summation, differentiable pooling (Ying
et al., 2018), or sort pooling (Zhang et al., 2018a), are inher-
ently coupled to the amount of information carried over via
multiple rounds of message passing. Hence, architectural
GNN choices are typically guided by dataset characteris-
tics, e.g., requiring to tune the number of message passing
rounds to the expected size of graphs.

Contribution. We propose a homological readout opera-
tion that captures the full global structure of a graph, while
relying only on node representations learned from immedi-
ate neighbors. This not only alleviates the aforementioned
design challenge, but potentially offers additional discrimi-
native information. Similar to previous works, we consider
a graph, G, as a simplicial complex, K, and use persistent
homology (Edelsbrunner & Harer, 2010) to capture homo-
logical changes that occur when constructing the graph one
part at a time (i.e., revealing changes in the number of con-
nected components or loops). As this hinges on an ordering
of the parts, prior works rely on a suitable filter function

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
�MarcNiethammer �rkwitt1982
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Message passing in graphs

v1

v2 v3

v4

v5

v6 v7

aggregate (via ∑, for example)

Repeat this process multiple times and update the vertex representations accordingly.

Use a readout function to obtain a graph-level representation.
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Learning graph filtrations
Motivation

• When classifying graphs with TDA, we often employ a filter function f : V → R.

For example, f (v) := deg(v) is commonly employed.

• We typically extend f to a full graph G by setting f ({u, v} := max{ f (u), f (v)}.
• Can we learn f end-to-end?
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Learning graph filtrations
Details

Use a differentiable coordinatisation scheme of the form Ψ : D → R. Letting

p := (c, d) for a tuple in a diagram, we have

Ψ(p) :=
1

1 + ‖p − c‖1
− 1

1 +
∣∣|r| − ‖p − c‖1

∣∣ ,
with c ∈ R2 and r ∈ R being trainable parameters. The whole diagram is represented

as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a

persistence diagram into Rn.
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A readout function based on persistent homology
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Obtaining a filter function f

Use a single GIN-ε layer with one level of message passing (1-GIN) with hidden

dimensionality 64, followed by a two-layer MLP.

GIN-1, h = 64 MLP(64, 64, 1) with sigmoid activation

Hence, f : V → [0, 1].
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Using this in practice

• If f is injective on the graph vertices, the gradient exists.
• We can initialise f using the vertex degree or uniform weights (plus a symbolic

perturbation to ensure gradient existence).

• Simple integration into existing architectures.

Method IMDB-BINARY IMDB-MULTI

1-GIN (GFL) 74.5±4.6 49.7±2.9

1-GIN (SUM) 73.5±3.8 50.3±2.6

1-GIN (SP) 73.0±4.0 50.5±2.1

Baseline 72.7±4.6 49.9±4.0

PH 68.9±3.5 46.1±4.2
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Graph filtration learning

• We are able to learn a scalar-valued filtration function in an end-to-end fashion.

• The readout function integrates nicely into existing architectures.

• Predictive performance is better than ‘raw’ persistent homology (with only a

single level of message passing).
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Summary

• Persistent homology can be made differentiable!

• Topological features improve representation learning tasks.

• This is only just the beginning; need to handle higher-dimensional features,

different filtrations, and much more…

♥
My co-authors, in particular Max, Michael, and Roland for providing figures,

illustrations, and animations.

Topology-Based Representation Learning Bastian Rieck 2nd July 2020 32/32


	anm1: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


