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Setting the stage

“Nerzhin, his lips tightly drawn, was inattentive to the point of rudeness; he
did not even bother to ask what exactly Verenyov had written about this arid
branch of mathematics in which he himself had done a little work for one of
his courses. […] Topology belonged to the stratosphere of human thought.
It might conceivably turn out to be of some use in the twenty-fourth century,
but for the time being…”
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The persistent homology of unlabelled & unweighted graphs

Use a filtration based on vertex degrees. Set f(v) := deg(v) for every vertex v and
f(u; v) := max(deg(u);deg(v)) for every edge (u; v) to obtain f : G ! R.
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Vectorise persistence diagrams using persistence images, for instance, and add
them to your favourite machine learning pipeline.
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Interlude
The Weisfeiler–Lehman test for graph isomorphism

1 Create a colour for each node in the graph (based on its label or its degree).
2 Collect colours of adjacent nodes in a multiset.
3 Compress the colours in the multiset and the node’s colour to form a new one.
4 Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

� The other direction is not valid! Non-isomorphic graphs can give rise to
coinciding compressed labels.
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Weisfeiler–Lehman iteration & feature vector
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Weisfeiler–Lehman iteration & feature vector
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Making Weisfeiler–Lehman features persistent

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Christian Bock Karsten Borgwardt
�chrs_bock �kmborgwardt

� The Weisfeiler–Lehman algorithm vectorises labelled graphs
� Persistent homology captures relevant topological features
� We can combine them to obtain a generalised formulation

B. Rieck�, C. Bock� and K. Borgwardt, ‘A Persistent Weisfeiler–Lehman Procedure
for Graph Classification’, ICML, 2019, pp. 5448–5458
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A distance between label multisets
Example for p = 1
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= distM([3; 1]; [2; 1])

= 1

Use vertex label from previousWeisfeiler–Lehman iteration, i.e. l(h�1)
vi , as well as

l
(h)
vi , the one from the current iteration:

distV (vi; vj) :=
h
l
(h�1)
vi 6= l
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i
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This turns any labelled graph into a weighted graph whose persistent homology we
can calculate!
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Persistence-based Weisfeiler–Lehman algorithm

1 Perform Weisfeiler–Lehman iteration for a number of steps.
2 In each step, obtain a filtration using the vertex distance.
3 Store persistence-based features.

Connected components

�
(h)
P-WL :=

h
p(h) (l0) ; p

(h) (l1) ; : : :
i

p(h) (li) :=
X

l(v)=li

pers (v)p ;

Cycles

�
(h)
P-WL-C :=

h
z(h) (l0) ; z

(h) (l1) ; : : :
i

z(h) (li) :=
X

li2l(u;v)

pers (u; v)p ;
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Classification results & summary

D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32� 0.35 85.96� 0.27 64.40� 0.07 63.25� 0.12 72.33� 0.32 58.31� 0.27 68.13� 0.23 66.96� 0.51 57.91� 0.83
E-Hist 72.90� 0.48 85.69� 0.46 63.66� 0.11 63.27� 0.07 72.14� 0.39 55.82� 0.00 65.53� 0.00 61.61� 0.00 59.03� 0.00

RetGK� 81.60� 0.30 90.30� 1.10 84.50� 0.20 75.80� 0.60 62.15� 1.60 67.80� 1.10 67.90� 1.40 63.90� 1.30

WL 79.45� 0.38 87.26� 1.42 85.58� 0.15 84.85� 0.19 76.11� 0.64 63.12� 1.44 67.64� 0.74 67.28� 0.97 64.80� 0.85
Deep-WL� 82.94� 2.68 80.31� 0.46 80.32� 0.33 75.68� 0.54 60.08� 2.55

P-WL 79.34� 0.46 86.10� 1.37 85.34� 0.14 84.78� 0.15 75.31� 0.73 63.07� 1.68 67.30� 1.50 68.40� 1.17 64.47� 1.84
P-WL-C 78.66� 0.32 90.51� 1.34 85.46� 0.16 84.96� 0.34 75.27� 0.38 64.02� 0.82 67.15� 1.09 68.57� 1.76 65.78� 1.22
P-WL-UC 78.50� 0.41 85.17� 0.29 85.62� 0.27 85.11� 0.30 75.86� 0.78 63.46� 1.58 67.02� 1.29 68.01� 1.04 65.44� 1.18
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Learning graph filtrations

Graph Filtration Learning

Christoph D. Hofer 1 Florian Graf 1 Bastian Rieck 2 Marc Niethammer 3 Roland Kwitt 1

Abstract

We propose an approach to learning with graph-
structured data in the problem domain of graph
classification. In particular, we present a novel
type of readout operation to aggregate node fea-
tures into a graph-level representation. To this
end, we leverage persistent homology computed
via a real-valued, learnable, filter function. We es-
tablish the theoretical foundation for differentiat-
ing through the persistent homology computation.
Empirically, we show that this type of readout
operation compares favorably to previous tech-
niques, especially when the graph connectivity
structure is informative for the learning problem.

1. Introduction
We consider the task of learning a function from the space
of (finite) undirected graphs, G, to a (discrete/continuous)
target domain Y. Additionally, graphs might have discrete,
or continuous attributes attached to each node. Prominent
examples for this class of learning problem appear in the
context of classifying molecule structures, chemical com-
pounds or social networks.

A substantial amount of research has been devoted to de-
veloping techniques for supervised learning with graph-
structured data, ranging from kernel-based methods (Sher-
vashidze et al., 2009; 2011; Feragen et al., 2013; Kriege
et al., 2016), to more recent approaches based on graph
neural networks (GNN) (Scarselli et al., 2009; Hamilton
et al., 2017; Zhang et al., 2018b; Morris et al., 2019; Xu
et al., 2019; Ying et al., 2018). Most of the latter works use
an iterative message passing scheme (Gilmer et al., 2017)
to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This

1Department of Computer Science, Univ. of Salzburg,
Austria 2Department of Biosystems Science and Engineer-
ing, ETH Zurich, Switzerland 3Univ. of North Carolina,
Chapel Hill, USA. Correspondence to: Christoph D. Hofer
<chr.dav.hofer@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).
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Figure 1. Overview of the proposed homological readout. Given a
graph/simplicial complex, we use a vertex-based graph functional
f to assign a real-valued score to each node. A practical choice
is to implement f as a GNN, with one level of message passing.
We then compute persistence barcodes, Bk, using the filtration
induced by f . Finally, barcodes are fed through a vectorization
scheme V and passed to a classifier (e.g., an MLP). Our approach
allows passing a learning signal through the persistent homology
computation, allowing to optimize f for the classification task.

aggregation step is typically referred to as a readout opera-
tion. While research has mostly focused on variants of the
message passing function, the readout step may have a sig-
nificant impact, as it aims to capture properties of the entire
graph. Importantly, both simple and more refined readout
operations, such as summation, differentiable pooling (Ying
et al., 2018), or sort pooling (Zhang et al., 2018a), are inher-
ently coupled to the amount of information carried over via
multiple rounds of message passing. Hence, architectural
GNN choices are typically guided by dataset characteris-
tics, e.g., requiring to tune the number of message passing
rounds to the expected size of graphs.

Contribution. We propose a homological readout opera-
tion that captures the full global structure of a graph, while
relying only on node representations learned from immedi-
ate neighbors. This not only alleviates the aforementioned
design challenge, but potentially offers additional discrimi-
native information. Similar to previous works, we consider
a graph, G, as a simplicial complex, K, and use persistent
homology (Edelsbrunner & Harer, 2010) to capture homo-
logical changes that occur when constructing the graph one
part at a time (i.e., revealing changes in the number of con-
nected components or loops). As this hinges on an ordering
of the parts, prior works rely on a suitable filter function

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
�MarcNiethammer �rkwitt1982

C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration
Learning’, ICML, 2020, arXiv: 1905.10996 [cs.LG]
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Graph neural networks in a nutshell

� Learn node representations hv based on aggregated attributes av
� Aggregate them over neighbourhoods
� Iteration k contains information up to k hops away
� Repeat iterationK times

a
(k)
v := aggregate(k)

�n
h
(k�1)
u j u 2 NG(v)

o�

h
(k)
v := combine(k)

�
h
(k�1)
v ; a

(k)
v

�

hG := readout
�n

h
(K)
v j v 2 VG

o�

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful
are Graph Neural Networks?’, ICLR, 2019.
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Message passing in graphs

v1
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P
, for example)

Here, vi 2 Rd is a d-dimensional attribute vector (use one-hot encoding for labels).

Repeat this process multiple times and update the vertex representations
accordingly. Use a readout function to obtain a graph-level representation.
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A readout function based on persistent homology
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Gradient existsGradient exists under certain conditions

	: D ! R is a differentiable coordinatisation (embedding) function. By stacking
n copies of 	, with different embedding parameters, we obtain an embedding
intoRn.
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Graph filtration learning in practice

� If f is injective on the graph vertices, the gradient exists.
� We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

� Simple integration into existing architectures.

Method IMDB-BINARY IMDB-MULTI

1-GIN (GFL) 74.5� 4.6 49.7� 2.9
1-GIN (SUM) 73.5� 3.8 50.3� 2.6
1-GIN (SP) 73.0� 4.0 50.5� 2.1

Only node features 72.7� 4.6 49.9� 4.0

PH 68.9� 3.5 46.1� 4.2

Recent Advances in Topology-Based Graph Classification Bastian Rieck @Pseudomanifold 25th May 2021 13/20

https://twitter.com/Pseudomanifold


Topological layers for graph classification

Topological Graph Neural Networks

Max Horn1, 2, ∗ Edward De Brouwer3, ∗ Michael Moor1, 2 Yves Moreau3

Bastian Rieck1, 2, ∗, †, and Karsten Borgwardt1, 2, †

1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, Switzerland

3ESAT-STADIUS, KU LEUVEN, 3001 Leuven, Belgium
∗These authors contributed equally.

†These authors jointly supervised this work.

Abstract

Graph neural networks (GNNs) are a powerful architecture
for tackling graph learning tasks, yet have been shown to be
oblivious to eminent substructures, such as cycles. We present
TOGL, a novel layer that incorporates global topological in-
formation of a graph using persistent homology. TOGL can
be easily integrated into any type of GNN and is strictly more
expressive in terms of the Weisfeiler–Lehman test of isomor-
phism. Augmenting GNNs with our layer leads to beneficial
predictive performance, both on synthetic data sets, which can
be trivially classified by humans but not by ordinary GNNs,
and on real-world data.

1. Introduction

Graphs are a natural description of structured data sets in
many domains, including bioinformatics, image processing,
and social network analysis. Numerous methods address graph
learning problems such as graph classification or node classifi-
cation. Graph neural networks (GNNs) describe a flexible set
of architectures for graph learning tasks and have seen many
successful applications over recent years. At their core, many
GNNs are based on iterative message passing schemes. Since
these schemes are collating information over the neighbours of
every node, GNNs cannot necessarily capture certain simple
topological structures in graphs, such as cycles.

By contrast, methods based on topological features, com-
monly summarised under the umbrella term of topological
data analysis (TDA), have shown promising results in ma-
chine learning tasks. Focusing on coarse structures—such
as the presence or absence of cycles—they can be used to
provide multi-scale representations that capture the shape of
complex structured and unstructured data sets. In this paper,
we propose a Topological Graph Layer (TOGL) that can be
easily integrated into any GNN to make it ‘topology-aware’.
We thus obtain a generic way to augment existing GNNs and
increase their expressivity in graph learning tasks.

Our contributions. We describe a layer based on TDA con-
cepts that can be integrated into any GNN. Our layer is dif-
ferentiable and capable of learning different topological repre-

sentations of a graph. We prove that even by itself, our layer
is strictly more expressive than any GNN since it incorporates
the ability to work with multi-scale topological information in
a graph. Moreover, we show that TOGL can improve predic-
tive performance of a GNN when topological information is
relevant for the task.

2. Background: Computational Topology

This paper considers undirected graphs, i.e. of the form
G = (V, E) with a set of vertices V and a set of edges E ⊆ V×V .
A simple set of topological features of is given by their number
of connected components β0 and their number of cycles β1.
These counts are also known as the Betti numbers in dimen-
sion 0 and dimension 1, respectively, and can be computed
efficiently (we will discuss this below). Betti numbers are
invariant under graph isomorphism; this is a consequence of
a more general theorem in algebraic topology that incorpo-
rates higher-dimensional topological features as well (Hatcher,
2002, pp. 103–133). Thus, given two graphs G and G′ with
G ' G′, their Betti numbers will coincide. As with many
invariants that are computationally efficient to compute, the
converse relation does not hold, limiting their ability to dis-
criminate between graphs. This is exacerbated by the fact that
Betti numbers constitute mere feature counts. It is possible
to increase their expressivity by assuming the existence of a
graph filtration, i.e. a sequence of nested subgraphs of G such
that

∅ = G(0) ⊆ G(1) ⊆ G(2) ⊆ · · · ⊆ G(n−1) ⊆ G(n) = G. (1)

A filtration makes it possible to obtain more insights into
the graph by ‘monitoring’ topological features of each G(i)

and calculating their topological relevance, which is referred
to as their persistence. If a topological feature appears for the
first time in G(i) and disappears in G( j), we assign this feature
a persistence of j − i. Equivalently, we can represent each of
these features as a tuple (i, j), which we collect in a persistence
diagramD. If a feature never disappears, we represent it by a
tuple (i,∞); such features are the ones that are counted for the
respective Betti numbers. This process was formalised and
extended to a wider class of structured data sets, namely sim-
plicial complexes, and is known under the name of persistent
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Topological graph neural networks
Overview

x(v) 2 Rd

Node attributes

2 1

2 1 = a
(v)
k

1 …
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k views
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Diagrams
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Aggregation

~x(v) 2 Rd

Output ~x(v)

� 	

� Use a node map �: Rd ! Rk to create k different filtrations of the graph.
� Use a coordinatisation function 	 to create compatible representations of the
node attributes.
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Expressivity
Cycles data set
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Expressivity
Necklaces data set
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Empirical results
Replacing one GCN layer with TOGL

Method PROTEINS-full ENZYMES DD IMDB-BINARY REDDIT-BINARY

GAT-4 76.3� 2.4 68.5� 5.2 75.9� 3.8 — —
GATED-GCN-4 76.4� 2.9 65.7� 4.9 72.9� 2.1 — —
GCN-4 76.1� 2.4 65.8� 4.6 72.8� 4.1 68.6� 4.9 92.8� 1.7
GIN-4 74.1� 3.4 65.3� 6.8 71.9� 3.9 72.9� 4.7 89.8� 2.2

TopoGNN-3-1 76.0� 3.9 53.0� 9.2 73.2� 4.7 72.0� 2.3 89.4� 2.2

WL 73.1� 0.5 54.3� 0.9 77.7� 2.0 71.2� 0.5 78.0� 0.6
WL-OA 73.5� 0.9 58.9� 0.9 77.8� 1.2 74.0� 0.7 87.6� 0.3

The inclusion of global topological features has a slightly detrimental effect for
some of the data sets! Why?

Recent Advances in Topology-Based Graph Classification Bastian Rieck @Pseudomanifold 25th May 2021 18/20

https://twitter.com/Pseudomanifold


Empirical results
What if we drop existing node features?
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Summary

� Topological features improve graph classification tasks.
� Recent advances result in differentiable representations.
� Often, the main performance drive is unclear; we need ablation studies that
disentangle performance.

� Hybrid models show particular promise for graph classification.
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