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What is topology?
Studying the abstract shape of objects
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Betti numbers
Counting d-dimensional holes

β0 = 1, β1 = 0, β2 = 1
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Betti numbers
Counting d-dimensional holes

β0 = 1, β1 = 2, β2 = 1
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Betti numbers
Counting d-dimensional holes

β0 = 1, β1 = 4, β2 = 1
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The shape of a graph

A graph
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The shape of a graph

Connected components
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The shape of a graph

Cycles
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The shape of a graph

Alternative cycles
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The Betti numbers of a graph

A graph with n vertices, m edges, and k connected components has β0 = k and
β1 = m + k − n.

β0 = 1, β1 = 14 + 1 − 13 = 2

Advances in Topology-Based Graph Classification Bastian Rieck @Pseudomanifold 16th October 2020 4/34

https://twitter.com/Pseudomanifold


Comparing two graphs using Betti numbers

β0 = 1, β1 = 14 + 1 − 13 = 2 β0 = 1, β1 = 15 + 1 − 13 = 3
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Properties of Betti numbers

Betti numbers are invariant under graph isomorphism, i.e. if G and G ′ are isomorphic,

their Betti numbers will coincide (the other direction is not true).

Some ‘heretical’ thoughts

Graph isomorphism is too restrictive for many purposes anyway; we want

‘near-isomorphism’ or isometry.

Advances in Topology-Based Graph Classification Bastian Rieck @Pseudomanifold 16th October 2020 6/34

https://twitter.com/Pseudomanifold


Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 13, β1 = 0 + 13 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 11, β1 = 2 + 11 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 10, β1 = 3 + 10 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 9, β1 = 4 + 9 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 8, β1 = 5 + 8 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 7, β1 = 6 + 7 − 13 = 0
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Persistent homology
Intuition
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 5, β1 = 8 + 5 − 13 = 0
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 5, β1 = 9 + 5 − 13 = 1
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 4, β1 = 10 + 4 − 13 = 1
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 3, β1 = 11 + 3 − 13 = 1
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 2, β1 = 12 + 2 − 13 = 1
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 1, β1 = 13 + 1 − 13 = 1
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Persistent homology
Intuition

Suppose we have weights on the edges. If we add them in ascending order of their

weight, we can watch as topological features change!

β0 = 1, β1 = 14 + 1 − 13 = 2
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Persistent homology
Intuition
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Persistent homology
Intuition, continued

Store information about features in a persistence diagram. A tuple (c, d) indicates that
a topological feature was created at step c and destroyed at step d.
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Persistent homology
Some concepts

We are calculating topological features of a filtration of graphs, i.e. a sequence of

subgraphs satisfying

G0 ⊆ G1 ⊆ . . . Gk−1 ⊆ Gk = G,

where G is the ‘original’ graph.

�
Persistent homology has a rich mathematical foundation that permits its use

in the context of simplicial complexes, i.e. generalised graphs, and many other

types of data structures.

Advances in Topology-Based Graph Classification Bastian Rieck @Pseudomanifold 16th October 2020 9/34

https://twitter.com/Pseudomanifold


Some formal properties

Persistent homology assigns a graph G with a function f : G → R a set of persistence

diagrams, describing the topological features of G , as ‘measured’ via f .
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Using persistence diagrams with machine learning pipelines

Persistence diagrams are multisets in R×R∪ {∞}, which can make their use in

machine learning somewhat cumbersome. There are two schools of thought for

integrating them:

1 Vectorise the diagram (i.e. create high-dimensional feature vectors)!

2 Change the architecture to include them!
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Using persistence diagrams with machine learning pipelines
Persistence image calculation

The persistence image amounts to a density estimation (with appropriate weights).

This image can be made into a high-dimensional feature vector, and integrated into

any machine learning algorithm.
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Afiltration for unlabelled & unweighted graphs

Use a filtration based on vertex degrees. Set f (v) := deg(v) for every vertex v and

f (u, v) := max(deg(u), deg(v)) for every edge (u, v) to obtain f : G → R.
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TheWeisfeiler–Lehman test for graph isomorphism

1 Create a colour for each node in the graph (based on its label or its degree).

2 Collect colours of adjacent nodes in a multiset.

3 Compress the colours in the multiset and the node’s colour to form a new one.

4 Continue this relabelling scheme until the colours are stable.

If the compressed labels of two graphs diverge, the graphs are not isomorphic!

� The other direction is not valid! Non-isomorphic graphs can give rise to

coinciding compressed labels.
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Weisfeiler–Lehman iteration & subtree feature vector
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Weisfeiler–Lehman iteration & subtree feature vector
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Weisfeiler–Lehman iteration & subtree feature vector
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Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Label

Count 3 1 2 1

Φ(G) := (3, 1, 2, 1)

Compare G and G ′ using a kernel function.

Kernels

k(G,G ′) := 〈Φ(G), Φ(G ′)〉
k(G,G ′) := exp

(
−‖Φ(G)− Φ(G ′)‖2/

(
2σ2))
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APersistent Weisfeiler–Lehman Procedure for Graph Classification
Proceedings of the 36th International Conference on Machine Learning

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Christian Bock Karsten Borgwardt
�chrs_bock �kmborgwardt

R The Weisfeiler–Lehman algorithm vectorises labelled graphs

R Persistent homology captures relevant topological features

R We can combine them to obtain a generalised formulation

R This requires a distance between multisets
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Digression
A distance between label multisets

Let A = {la1
1 , la2

2 , . . . } and B = {lb1
1 , lb2

2 , . . . } be two multisets that are defined over

the same label alphabet Σ = {l1, l2, . . . }.

Transform the sets into count vectors, i.e. ~x := [a1, a2, . . . ] and ~y := [b1, b2, . . . ].

Calculate theirmultiset distance as

distM(~x,~y) :=

(
∑

i
|ai − bi|p

) 1
p

,

i.e. the pth Minkowski distance, for p ∈ R. Since nodes and their multisets are in

one-to-one correspondence, we now have a metric on the graph!
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Multiset distance
Example for p = 1

A

B

D E
F

C

G

distM(C, E) = distM
(
{ 3, 1}, { 2, 1}

)
= distM([3, 1], [2, 1])
= 1

distM(C, A) = distM
(
{ 3, 1}, { 1}

)
= distM([3, 1], [1, 0])
= 3
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Extending the multiset distance to a distance between vertices

Use vertex label from previousWeisfeiler–Lehman iteration, i.e. l(h−1)
vi , as well as l(h)vi ,

the one from the current iteration:

distV(vi, vj) :=
[
l(h−1)
vi 6= l(h−1)

vj

]
+ distM

(
l(h)vi , l(h)vj

)
+ τ

� τ ∈ R>0 is required to make this into a proper metric. Else, the expression

can become zero even though the vertices themselves are not equal.

This turns any labelled graph into a weighted graph whose persistent homology we

can calculate!
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Persistence-basedWeisfeiler–Lehman algorithm

1 PerformWeisfeiler–Lehman iteration for a number of steps.

2 In each step, obtain a filtration using the vertex distance.

3 Store persistence-based features.

Why does this work?

For graphs, there is a one-to-one mapping between topological features and

vertices/edges! Vertices correspond to connected components, while edges

correspond to cycles.
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Persistence-basedWeisfeiler–Lehman feature vectors

Connected components

Φ(h)
P-WL

:=
[
p(h) (l0) , p(h) (l1) , . . .

]
p(h) (li) := ∑

l(v)=li

pers (v)p ,

Cycles

Φ(h)
P-WL-C

:=
[
z(h) (l0) , z(h) (l1) , . . .

]
z(h) (li) := ∑

li∈l(u,v)
pers (u, v)p ,

Bonus

We can re-define the vertex distance to obtain the original Weisfeiler–Lehman

subtree features (plus information about cycles):

distV(vi, vj) :=

{
1 if vi 6= vj

0 otherwise
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APersistent Weisfeiler–Lehman Procedure for Graph Classification
Classification results & summary

D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32± 0.35 85.96± 0.27 64.40± 0.07 63.25± 0.12 72.33± 0.32 58.31± 0.27 68.13± 0.23 66.96± 0.51 57.91± 0.83

E-Hist 72.90± 0.48 85.69± 0.46 63.66± 0.11 63.27± 0.07 72.14± 0.39 55.82± 0.00 65.53± 0.00 61.61± 0.00 59.03± 0.00

RetGK∗ 81.60± 0.30 90.30± 1.10 84.50± 0.20 75.80± 0.60 62.15± 1.60 67.80± 1.10 67.90± 1.40 63.90± 1.30

WL 79.45± 0.38 87.26± 1.42 85.58± 0.15 84.85± 0.19 76.11± 0.64 63.12± 1.44 67.64± 0.74 67.28± 0.97 64.80± 0.85

Deep-WL∗ 82.94± 2.68 80.31± 0.46 80.32± 0.33 75.68± 0.54 60.08± 2.55

P-WL 79.34± 0.46 86.10± 1.37 85.34± 0.14 84.78± 0.15 75.31± 0.73 63.07± 1.68 67.30± 1.50 68.40± 1.17 64.47± 1.84

P-WL-C 78.66± 0.32 90.51± 1.34 85.46± 0.16 84.96± 0.34 75.27± 0.38 64.02± 0.82 67.15± 1.09 68.57± 1.76 65.78± 1.22

P-WL-UC 78.50± 0.41 85.17± 0.29 85.62± 0.27 85.11± 0.30 75.86± 0.78 63.46± 1.58 67.02± 1.29 68.01± 1.04 65.44± 1.18

Try it out
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Graph Filtration Learning
Proceedings of the 37th International Conference on Machine Learning

Graph Filtration Learning

Christoph D. Hofer 1 Florian Graf 1 Bastian Rieck 2 Marc Niethammer 3 Roland Kwitt 1

Abstract

We propose an approach to learning with graph-
structured data in the problem domain of graph
classification. In particular, we present a novel
type of readout operation to aggregate node fea-
tures into a graph-level representation. To this
end, we leverage persistent homology computed
via a real-valued, learnable, filter function. We es-
tablish the theoretical foundation for differentiat-
ing through the persistent homology computation.
Empirically, we show that this type of readout
operation compares favorably to previous tech-
niques, especially when the graph connectivity
structure is informative for the learning problem.

1. Introduction
We consider the task of learning a function from the space
of (finite) undirected graphs, G, to a (discrete/continuous)
target domain Y. Additionally, graphs might have discrete,
or continuous attributes attached to each node. Prominent
examples for this class of learning problem appear in the
context of classifying molecule structures, chemical com-
pounds or social networks.

A substantial amount of research has been devoted to de-
veloping techniques for supervised learning with graph-
structured data, ranging from kernel-based methods (Sher-
vashidze et al., 2009; 2011; Feragen et al., 2013; Kriege
et al., 2016), to more recent approaches based on graph
neural networks (GNN) (Scarselli et al., 2009; Hamilton
et al., 2017; Zhang et al., 2018b; Morris et al., 2019; Xu
et al., 2019; Ying et al., 2018). Most of the latter works use
an iterative message passing scheme (Gilmer et al., 2017)
to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This

1Department of Computer Science, Univ. of Salzburg,
Austria 2Department of Biosystems Science and Engineer-
ing, ETH Zurich, Switzerland 3Univ. of North Carolina,
Chapel Hill, USA. Correspondence to: Christoph D. Hofer
<chr.dav.hofer@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).
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Figure 1. Overview of the proposed homological readout. Given a
graph/simplicial complex, we use a vertex-based graph functional
f to assign a real-valued score to each node. A practical choice
is to implement f as a GNN, with one level of message passing.
We then compute persistence barcodes, Bk, using the filtration
induced by f . Finally, barcodes are fed through a vectorization
scheme V and passed to a classifier (e.g., an MLP). Our approach
allows passing a learning signal through the persistent homology
computation, allowing to optimize f for the classification task.

aggregation step is typically referred to as a readout opera-
tion. While research has mostly focused on variants of the
message passing function, the readout step may have a sig-
nificant impact, as it aims to capture properties of the entire
graph. Importantly, both simple and more refined readout
operations, such as summation, differentiable pooling (Ying
et al., 2018), or sort pooling (Zhang et al., 2018a), are inher-
ently coupled to the amount of information carried over via
multiple rounds of message passing. Hence, architectural
GNN choices are typically guided by dataset characteris-
tics, e.g., requiring to tune the number of message passing
rounds to the expected size of graphs.

Contribution. We propose a homological readout opera-
tion that captures the full global structure of a graph, while
relying only on node representations learned from immedi-
ate neighbors. This not only alleviates the aforementioned
design challenge, but potentially offers additional discrimi-
native information. Similar to previous works, we consider
a graph, G, as a simplicial complex, K, and use persistent
homology (Edelsbrunner & Harer, 2010) to capture homo-
logical changes that occur when constructing the graph one
part at a time (i.e., revealing changes in the number of con-
nected components or loops). As this hinges on an ordering
of the parts, prior works rely on a suitable filter function

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
�MarcNiethammer �rkwitt1982
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Digression
Graph neural networks in a nutshell

R Learn node representations hv based on aggregated attributes av

R Aggregate them over neighbourhoods

R Iteration k contains information up to k hops away
R Repeat iteration K times

a(k)v := aggregate(k)
({

h(k−1)
u | u ∈ N (v)

})
h(k)v := combine(k)

(
h(k−1)

v , a(k)v

)
hG := readout

({
h(K)v | v ∈ VG

})
This terminology follows the paper How powerful are graph neural networks? by Xu et al., presented at the

International Conference on Learning Representations 2019.
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Digression
Message passing in graphs

v1

v2 v3

v4

v5

v6 v7

aggregate (via ∑, for example)

Here, vi ∈ Rd is a d-dimensional attribute vector (use one-hot encoding for labels).

Repeat this process multiple times and update the vertex representations accordingly.

Use a readout function to obtain a graph-level representation.
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Learning graph filtrations
Motivation

R When classifying graphs with TDA, we often employ a filter function f : V → R,

such as f (v) := deg(v).
R We typically extend f to edges by setting f ({u, v}) := max{ f (u), f (v)}.
R How can we learn f end-to-end?
R Crucial ingredient: a differentiable coordinatisation scheme!
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Learning graph filtrations
Details

Use a differentiable coordinatisation scheme of the form Ψ : D → R. Letting

p := (a, b) denote a tuple in a persistence diagram, we have

Ψ(p) :=
1

1 + ‖p − c‖1
− 1

1 + abs(r − ‖p − c‖1)
,

with c ∈ R2 and r ∈ R>0 being trainable parameters. The whole diagram is

represented as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a

persistence diagram into Rn.
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A readout function based on persistent homology
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Why does this work?
Terminology

R Let f : G → R be a function on a graph. Persistent homology can be seen as a

map from (G, f ) to {(ci, di)}i∈I .

R Let S be a map from points in the persistence diagram to simplex pairs (vertices

and edges), i.e. S(ci, di) = (σi, τi). We write S(·) to denote the map for a single

point.

R Depending on the filtration, we can also map a simplex to one of its vertices. For

the sublevel set filtration, we have a map V with V(σ) := arg maxv∈σ f (v).
R Finally, let P := (Pc,Pd), with Pc := V ◦ S(ci) and Pd := V ◦ S(di).
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Why does this work?
Example

0 1 2 3 4

0
1
2
3
4

a

b

x

f(
x)

0 1 2 3 4

0
1
2
3
4

ε

ε

S

We have S(0, 4) = ({a}, {a, b}).

We have V({a}) = x3 and V({a, b}) = x4.

We have P(0, 4) = (V ◦ S)(0, 4) = (x3, x4).
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Why does this work?
Gradient calculation sketch

R If the function values are distinct, then P is unique.

R If the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on θ = (θ1, θ2, . . . ). We then have f (Pc(ci)) = ci, and, since

P is constant,
∂ci

∂θj
=

∂ f (Pc(ci))

∂θj
=

∂ f (vi)

∂θj
=

∂ f
∂θj

(vi) ,

i.e. the partial derivative is equivalent to the derivative of the function evaluated at

the image of the map Pc.

This formulation and proof is due to the paper Topological Function Optimization for Continuous Shape Matching by

Poulenard et al., which appeared in Computer Graphics Forum, Volume 37, Issue 5, pp. 13–25.
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Graph Filtration Learning
Obtaining a filter function f

Use a single GIN-ε layer with one level of message passing (1-GIN) with hidden

dimensionality 64, followed by a two-layer MLP.

GIN-1, h = 64 MLP(64, 64, 1) with sigmoid activation

Hence, f : V → [0, 1].

We can initialise f using the vertex degree or uniform weights (plus a symbolic

perturbation to ensure gradient existence).
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Graph Filtration Learning
Practical results & summary

Method IMDB-BINARY IMDB-MULTI

1-GIN (GFL) 74.5±4.6 49.7±2.9

1-GIN (SUM) 73.5±3.8 50.3±2.6

1-GIN (SP) 73.0±4.0 50.5±2.1

Baseline 72.7±4.6 49.9±4.0

PH 68.9±3.5 46.1±4.2

Try it out R We can learn a scalar-valued filtration function in an end-to-end

fashion.

R The readout function integrates nicely into existing architectures.

R Predictive performance is better than ‘raw’ persistent homology (with

only a single level of message passing).
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Summary

R Topological features improve graph classification tasks.

R Recent advances make persistent homology differentiable!

R This is only just the beginning; need to handle higher-dimensional features,

different filtrations, and much more…

R The future belongs to hybrid models!

♥
My co-authors Christian Bock, Karsten Borgwardt, Max Horn, Roland Kwitt, and

Michael Moor for providing feedback, illustrations, and a plethora of high-quality

discussions!
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