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Setting the stage

“Nerzhin, his lips tightly drawn, was inattentive to the point of rudeness; he
did not even bother to ask what exactly Verenyov had written about this arid
branch of mathematics in which he himself had done a little work for one of his
courses. […] Topology belonged to the stratosphere of human thought. It might
conceivably turn out to be of some use in the twenty-fourth century, but for the
time being…”

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 1/34

https://twitter.com/Pseudomanifold


Persistent homology
Vietoris–Rips complex calculation
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Given ǫ ∈ R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less
than or equal to ǫ. When using Euclidean balls of radius r = 0.5ǫ, a simplex is created for
each pairwise intersection.
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Distances between persistence diagrams
Bottleneck distance

W∞(D1,D2) := inf
η : D1→D2

sup
x∈D1

‖x − η(x)‖∞
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Stability theorem
Robustness to small-scale perturbations

LetM be a triangulable space with continuous tame functions f , g : M → R. Then
the corresponding persistence diagrams satisfy W∞

(
D f ,Dg

)
≤ ‖ f − g‖∞.

0 1 2

0

1

2

ǫ

ǫ

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 4/34

https://twitter.com/Pseudomanifold


Stability theorem
Robustness to small-scale perturbations

LetM be a triangulable space with continuous tame functions f , g : M → R. Then
the corresponding persistence diagrams satisfy W∞

(
D f ,Dg

)
≤ ‖ f − g‖∞.

0 1 2

0

1

2

ǫ

ǫ

0 1 2

0

1

2

ǫ

ǫ

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 4/34

https://twitter.com/Pseudomanifold


Stability theorem
Robustness to small-scale perturbations

LetM be a triangulable space with continuous tame functions f , g : M → R. Then
the corresponding persistence diagrams satisfy W∞

(
D f ,Dg

)
≤ ‖ f − g‖∞.

0 1 2

0

1

2

ǫ

ǫ

0 1 2

0

1

2

ǫ

ǫ

0 1 2

0

1

2

ǫ

ǫ

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 4/34

https://twitter.com/Pseudomanifold


Implications for machine learning

Need to be careful when working with mini-batches M̃ of a point cloudM. As an
example, consider a point cloud with 100 points (normally-distributed in R

2) and 50
subsamples of varying size m.
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Bridging the chasm

• Persistent homology is inherently discrete
• Deep learning is inherently continuous

Challenge
Can we make the calculation of a persistence diagram differentiable, in particular if
we have some control over the input spaceM?
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Making persistent homology differentiable
Terminology

• Let f : M → R be a function on a manifold. Persistent homology can be seen as
a map from (M, f ) to {(ci, di)}i∈I .

• Let S be a map from points in the persistence diagram to simplex pairs (vertices
and edges), i.e. S(ci, di) = (σi, τi). We write S(·) to denote the map for a single
point.

• Depending on the filtration, we can also map a simplex to one of its vertices. For
a sublevel set filtration, we have a map V with V(σ) := arg maxv∈σ f (v).

• Finally, let P := (Pc,Pd), with Pc := V ◦ S(ci) and Pd := V ◦ S(di).
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Making persistent homology differentiable
Example
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We have .

We have and .

We have .
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We have S(0, 4) = ({a}, {a, b}).

We have and .

We have .
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We have S(0, 4) = ({a}, {a, b}).

We have V({a}) = x3 and V({a, b}) = x4.

We have .
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We have S(0, 4) = ({a}, {a, b}).

We have V({a}) = x3 and V({a, b}) = x4.

We have P(0, 4) = (V ◦ S)(0, 4) = (x3, x4).
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Making persistent homology differentiable
Gradient calculation sketch

• If the function values are distinct, then P is unique.
• If the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on θ = (θ1, θ2, . . . ). We then have f (Pc(ci)) = f (vi) = ci,
and, since P is constant,

∂ci

∂θj
=

∂ f (Pc(ci))

∂θj
=

∂ f (vi)

∂θj
=

∂ f

∂θj
(vi),

i.e. the partial derivative is equivalent to the derivative of the function evaluated at
the image of the map Pc.
This formulation is due to A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function
Optimization for Continuous Shape Matching’, Computer Graphics Forum 37.5, 2018, pp. 13–25.
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Topological autoencoders

Topological Autoencoders

Michael Moor † 1 2 Max Horn † 1 2 Bastian Rieck ‡ 1 2 Karsten Borgwardt ‡ 1 2

Abstract

We propose a novel approach for preserving topo-

logical structures of the input space in latent rep-

resentations of autoencoders. Using persistent ho-

mology, a technique from topological data analy-

sis, we calculate topological signatures of both the

input and latent space to derive a topological loss

term. Under weak theoretical assumptions, we

construct this loss in a differentiable manner, such

that the encoding learns to retain multi-scale con-

nectivity information. We show that our approach

is theoretically well-founded and that it exhibits

favourable latent representations on a synthetic

manifold as well as on real-world image data sets,

while preserving low reconstruction errors.

1. Introduction

While topological features, in particular multi-scale features

derived from persistent homology, have seen increasing use

in the machine learning community (Carrière et al., 2019,

Guss & Salakhutdinov, 2018, Hofer et al., 2017, 2019a,b,

Ramamurthy et al., 2019, Reininghaus et al., 2015, Rieck

et al., 2019a,b), employing topology directly as a constraint

for modern deep learning methods remains a challenge. This

is due to the inherently discrete nature of these computa-

tions, making backpropagation through the computation of

topological signatures immensely difficult or only possible

in certain special circumstances (Chen et al., 2019, Hofer

et al., 2019a, Poulenard et al., 2018).

This work presents a novel approach that permits obtaining

gradients during the computation of topological signatures.

This makes it possible to employ topological constraints

while training deep neural networks, as well as building

topology-preserving autoencoders. Specifically, we make

†Equal contribution. ‡These authors jointly directed this
work. 1Department of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland 2SIB Swiss Institute of Bioin-
formatics, Switzerland. Correspondence to: Karsten Borgwardt
<karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the following contributions:

1. We develop a new topological loss term for autoen-

coders that helps harmonise the topology of the data

space with the topology of the latent space.

2. We prove that our approach is stable on the level of

mini-batches, resulting in suitable approximations of

the persistent homology of a data set.

3. We empirically demonstrate that our loss term aids

in dimensionality reduction by preserving topological

structures in data sets; in particular, the learned latent

representations are useful in that the preservation of

topological structures can improve interpretability.

2. Background: Persistent Homology

Persistent homology (Barannikov, 1994, Edelsbrunner &

Harer, 2008) is a method from the field of computational

topology, which develops tools for analysing topological fea-

tures (connectivity-based features such as connected com-

ponents) of data sets. We first introduce the underlying

concept of simplicial homology. For a simplicial complex

K, i.e. a generalised graph with higher-order connectivity

information such as cliques, simplicial homology employs

matrix reduction algorithms to assign K a family of groups,

the homology groups. The dth homology group Hd(K) of

K contains d-dimensional topological features, such as con-

nected components (d = 0), cycles/tunnels (d = 1), and

voids (d = 2). Homology groups are typically summarised

by their ranks, thereby obtaining a simple invariant “signa-

ture” of a manifold. For example, a circle in R
2 has one

feature with d = 1 (a cycle), and one feature with d = 0 (a

connected component).

In practice, the underlying manifold M is unknown and we

are working with a point cloud X := {x1, . . . , xn} ⊆ R
d

and a metric dist : X × X → R such as the Euclidean

distance. Persistent homology extends simplicial homol-

ogy to this setting: instead of approximating M by means

of a single simplicial complex, which would be an unsta-

ble procedure due to the discrete nature of X , persistent

homology tracks changes in the homology groups over mul-

tiple scales of the metric. This is achieved by construct-

ing a special simplicial complex, the Vietoris–Rips com-

plex (Vietoris, 1927). For 0 ≤ ǫ < ∞, the Vietoris–Rips

complex of X at scale ǫ, denoted by Rǫ(X), contains all

Michael Moor Max Horn Karsten Borgwardt
�Michael_D_Moor �ExpectationMax �kmborgwardt

M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, ICML,
2020, arXiv: 1906.00722 [cs.LG]
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Topological autoencoders
Motivation
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Topological autoencoders
Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ǫ
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ǫ
Topological loss
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Topological autoencoders
Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss
function!

Why this works in theory
Let X be a point cloud of cardinality n and X(m) be one subsample of X of cardinality
m, i.e. X(m) ⊆ X, sampled without replacement. We can bound the probability of the
persistence diagrams of X(m) exceeding a threshold in terms of the bottleneck
distance as

P

(
W∞

(
DX,DX(m)

)
>ǫ

)
≤ P

(
distH

(
X, X(m)

)
>2ǫ

)
,

where distH denotes the Hausdorff distance. In other words: mini-batches are
topologically similar if the subsampling is not too coarse.
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Topological autoencoders
Gradient calculation intuition

Distance matrix A




0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0




Every point in the persistence diagram can be mapped to one entry in the distance
matrix! Each entry is a distance, so it can be changed during training (at least in the
latent space).
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Topological autoencoders
Loss term

Lt := LX→Z +LZ→X

LX→Z := 1
2

∥∥A
X
[
πX

]
− A

Z
[
πX

]∥∥2
LZ→X := 1

2

∥∥A
Z
[
πZ

]
− A

X
[
πZ

]∥∥2

• X : input space
• Z : latent space
• A

X: distances in input mini-batch
• A

Z: distances in latent mini-batch
• πX: persistence pairing of input mini-batch
• πZ: persistence pairing of latent mini-batch

The loss is bi-directional!

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 15/34

https://twitter.com/Pseudomanifold


Qualitative evaluation
‘Spheres’ data set

PCA UMAP Autoencoder

Isomap t-SNE Topological autoencoder
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Qualitative evaluation
‘Spheres’ data set; zooming in…

Autoencoder Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

fXσ (x) := ∑
y∈X

exp
(
−σ−1 dist(x, y)2

)
,

where dist denotes a metric such as the Euclidean distance. This is well-defined on
mini-batches and on the full input data set.

Given σ, we evaluate KLσ := KL
(

f X
σ ‖ f Z

σ

)
, which measures the similarity between

the two density distributions.
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Quantitative evaluation

Method KL0.01 KL0.1 KL1 ℓ-MRRE ℓ-Cont ℓ-Trust ℓ-RMSE MSE (data)

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4
PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610
t-SNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1
UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3
AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681
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Learning graph filtrations

Graph Filtration Learning

Christoph D. Hofer 1 Florian Graf 1 Bastian Rieck 2 Marc Niethammer 3 Roland Kwitt 1

Abstract

We propose an approach to learning with graph-

structured data in the problem domain of graph

classification. In particular, we present a novel

type of readout operation to aggregate node fea-

tures into a graph-level representation. To this

end, we leverage persistent homology computed

via a real-valued, learnable, filter function. We es-

tablish the theoretical foundation for differentiat-

ing through the persistent homology computation.

Empirically, we show that this type of readout

operation compares favorably to previous tech-

niques, especially when the graph connectivity

structure is informative for the learning problem.

1. Introduction

We consider the task of learning a function from the space

of (finite) undirected graphs, G, to a (discrete/continuous)

target domain Y. Additionally, graphs might have discrete,

or continuous attributes attached to each node. Prominent

examples for this class of learning problem appear in the

context of classifying molecule structures, chemical com-

pounds or social networks.

A substantial amount of research has been devoted to de-

veloping techniques for supervised learning with graph-

structured data, ranging from kernel-based methods (Sher-

vashidze et al., 2009; 2011; Feragen et al., 2013; Kriege

et al., 2016), to more recent approaches based on graph

neural networks (GNN) (Scarselli et al., 2009; Hamilton

et al., 2017; Zhang et al., 2018b; Morris et al., 2019; Xu

et al., 2019; Ying et al., 2018). Most of the latter works use

an iterative message passing scheme (Gilmer et al., 2017)

to learn node representations, followed by a graph-level

pooling operation that aggregates node-level features. This

1Department of Computer Science, Univ. of Salzburg,
Austria 2Department of Biosystems Science and Engineer-
ing, ETH Zurich, Switzerland 3Univ. of North Carolina,
Chapel Hill, USA. Correspondence to: Christoph D. Hofer
<chr.dav.hofer@gmail.com>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).
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Figure 1. Overview of the proposed homological readout. Given a

graph/simplicial complex, we use a vertex-based graph functional

f to assign a real-valued score to each node. A practical choice

is to implement f as a GNN, with one level of message passing.

We then compute persistence barcodes, Bk, using the filtration

induced by f . Finally, barcodes are fed through a vectorization

scheme V and passed to a classifier (e.g., an MLP). Our approach

allows passing a learning signal through the persistent homology

computation, allowing to optimize f for the classification task.

aggregation step is typically referred to as a readout opera-

tion. While research has mostly focused on variants of the

message passing function, the readout step may have a sig-

nificant impact, as it aims to capture properties of the entire

graph. Importantly, both simple and more refined readout

operations, such as summation, differentiable pooling (Ying

et al., 2018), or sort pooling (Zhang et al., 2018a), are inher-

ently coupled to the amount of information carried over via

multiple rounds of message passing. Hence, architectural

GNN choices are typically guided by dataset characteris-

tics, e.g., requiring to tune the number of message passing

rounds to the expected size of graphs.

Contribution. We propose a homological readout opera-

tion that captures the full global structure of a graph, while

relying only on node representations learned from immedi-

ate neighbors. This not only alleviates the aforementioned

design challenge, but potentially offers additional discrimi-

native information. Similar to previous works, we consider

a graph, G, as a simplicial complex, K, and use persistent

homology (Edelsbrunner & Harer, 2010) to capture homo-

logical changes that occur when constructing the graph one

part at a time (i.e., revealing changes in the number of con-

nected components or loops). As this hinges on an ordering

of the parts, prior works rely on a suitable filter function

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
�MarcNiethammer �rkwitt1982

C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’,
ICML, 2020, arXiv: 1905.10996 [cs.LG]
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Digression
Graph neural networks in a nutshell

• Learn node representations hv based on aggregated attributes av

• Aggregate them over neighbourhoods
• Iteration k contains information up to k hops away
• Repeat iteration K times

a
(k)
v := aggregate(k)

({
h
(k−1)
u | u ∈ N (v)

})

h
(k)
v := combine(k)

(
h
(k−1)
v , a

(k)
v

)

hG := readout
({

h
(K)
v | v ∈ VG

})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are
Graph Neural Networks?’, International Conference on Learning Representations, 2019.
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Digression
Message passing in graphs

v1

v2 v3

v4

v5

v6 v7

aggregate (via , for example)

Repeat this process multiple times and update the vertex representations accordingly.
Use a readout function to obtain a graph-level representation.
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Learning graph filtrations
Motivation

• When classifying graphs with TDA, we often employ a filter function f : V → R.
For example, f (v) := deg(v) is commonly employed.

• We typically extend f to a full graph G by setting f ({u, v} := max{ f (u), f (v)}.
• Can we learn f end-to-end?
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A readout function based on persistent homology
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Coordinatisation function

Use a differentiable coordinatisation scheme of the form Ψ : D → R. Letting
p := (a, b) denote a tuple in a persistence diagram, we have

Ψ(p) :=
1

1 + ‖p − c‖1
−

1

1 + abs(r − ‖p − c‖1)
,

with c ∈ R
2 and r ∈ R>0 being trainable parameters. The whole diagram is

represented as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a
persistence diagram into R

n.
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How to initialise f ?

Use a single GIN-ǫ layer with one level of message passing (1-GIN) with hidden
dimensionality 64, followed by a two-layer MLP.

GIN-1, h = 64 MLP(64, 64, 1) with sigmoid activation

Hence, f : V → [0, 1].

We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).
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Using this in practice

• If f is injective on the graph vertices, the gradient exists.
• We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

• Simple integration into existing architectures.

Method IMDB-BINARY IMDB-MULTI

1-GIN (GFL) 74.5 4.6 49.7 2.9
1-GIN (SUM) 73.5 3.8 50.3 2.6
1-GIN (SP) 73.0 4.0 50.5 2.1

Baseline 72.7 4.6 49.9 4.0

PH 68.9 3.5 46.1 4.2
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Topological layers for graph classification

Topological Graph Neural Networks
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Abstract

Graph neural networks (GNNs) are a powerful architecture

for tackling graph learning tasks, yet have been shown to be

oblivious to eminent substructures, such as cycles. We present

TOGL, a novel layer that incorporates global topological in-

formation of a graph using persistent homology. TOGL can

be easily integrated into any type of GNN and is strictly more

expressive in terms of the Weisfeiler–Lehman test of isomor-

phism. Augmenting GNNs with our layer leads to beneficial

predictive performance, both on synthetic data sets, which can

be trivially classified by humans but not by ordinary GNNs,

and on real-world data.

1. Introduction

Graphs are a natural description of structured data sets in

many domains, including bioinformatics, image processing,

and social network analysis. Numerous methods address graph

learning problems such as graph classification or node classifi-

cation. Graph neural networks (GNNs) describe a flexible set

of architectures for graph learning tasks and have seen many

successful applications over recent years. At their core, many

GNNs are based on iterative message passing schemes. Since

these schemes are collating information over the neighbours of

every node, GNNs cannot necessarily capture certain simple

topological structures in graphs, such as cycles.

By contrast, methods based on topological features, com-

monly summarised under the umbrella term of topological

data analysis (TDA), have shown promising results in ma-

chine learning tasks. Focusing on coarse structures—such

as the presence or absence of cycles—they can be used to

provide multi-scale representations that capture the shape of

complex structured and unstructured data sets. In this paper,

we propose a Topological Graph Layer (TOGL) that can be

easily integrated into any GNN to make it ‘topology-aware’.

We thus obtain a generic way to augment existing GNNs and

increase their expressivity in graph learning tasks.

Our contributions. We describe a layer based on TDA con-

cepts that can be integrated into any GNN. Our layer is dif-

ferentiable and capable of learning different topological repre-

sentations of a graph. We prove that even by itself, our layer

is strictly more expressive than any GNN since it incorporates

the ability to work with multi-scale topological information in

a graph. Moreover, we show that TOGL can improve predic-

tive performance of a GNN when topological information is

relevant for the task.

2. Background: Computational Topology

This paper considers undirected graphs, i.e. of the form

G = (V, E) with a set of vertices V and a set of edges E ⊆ V×V .

A simple set of topological features of is given by their number

of connected components β0 and their number of cycles β1.

These counts are also known as the Betti numbers in dimen-

sion 0 and dimension 1, respectively, and can be computed

efficiently (we will discuss this below). Betti numbers are

invariant under graph isomorphism; this is a consequence of

a more general theorem in algebraic topology that incorpo-

rates higher-dimensional topological features as well (Hatcher,

2002, pp. 103–133). Thus, given two graphs G and G′ with

G ≃ G′, their Betti numbers will coincide. As with many

invariants that are computationally efficient to compute, the

converse relation does not hold, limiting their ability to dis-

criminate between graphs. This is exacerbated by the fact that

Betti numbers constitute mere feature counts. It is possible

to increase their expressivity by assuming the existence of a

graph filtration, i.e. a sequence of nested subgraphs of G such

that

∅ = G(0) ⊆ G(1) ⊆ G(2) ⊆ · · · ⊆ G(n−1) ⊆ G(n)
= G. (1)

A filtration makes it possible to obtain more insights into

the graph by ‘monitoring’ topological features of each G(i)

and calculating their topological relevance, which is referred

to as their persistence. If a topological feature appears for the

first time in G(i) and disappears in G( j), we assign this feature

a persistence of j − i. Equivalently, we can represent each of

these features as a tuple (i, j), which we collect in a persistence

diagramD. If a feature never disappears, we represent it by a

tuple (i,∞); such features are the ones that are counted for the

respective Betti numbers. This process was formalised and

extended to a wider class of structured data sets, namely sim-

plicial complexes, and is known under the name of persistent
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Topological graph neural networks
Overview
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Expressivity
Cycles data set
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Expressivity
Necklaces data set
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Empirical results

Method PROTEINS-full ENZYMES DD IMDB-BINARY REDDIT-BINARY

GAT-4 76.3 ± 2.4 68.5 ± 5.2 75.9 ± 3.8 — —
GATED-GCN-4 76.4 ± 2.9 65.7 ± 4.9 72.9 ± 2.1 — —
GCN-4 76.1 ± 2.4 65.8 ± 4.6 72.8 ± 4.1 68.6 ± 4.9 92.8 ± 1.7
GIN-4 74.1 ± 3.4 65.3 ± 6.8 71.9 ± 3.9 72.9 ± 4.7 89.8 ± 2.2

TopoGNN-3-1 76.0 ± 3.9 53.0 ± 9.2 73.2 ± 4.7 72.0 ± 2.3 89.4 ± 2.2

WL 73.1 ± 0.5 54.3 ± 0.9 77.7 ± 2.0 71.2 ± 0.5 78.0 ± 0.6
WL-OA 73.5 ± 0.9 58.9 ± 0.9 77.8 ± 1.2 74.0 ± 0.7 87.6 ± 0.3
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Empirical results
Only random node features
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Summary

• Persistent homology can be made differentiable!
• Topological features improve representation learning tasks.
• Often, the main performance drive is unclear; we need ablation studies that
disentangle performance.

• Hybrid models show particular promise for graph classification.

♥ Mymain co-authors Christian, Christoph, Edward, Karsten, Max, Michael, Roland.

Topological Representation Learning for Structured and Unstructured Data Bastian Rieck @Pseudomanifold 18th February 2021 34/34

https://twitter.com/Pseudomanifold

