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Setting the stage

“Nerzhin, his lips tightly drawn, was inattentive to the point of rudeness; he
did not even bother to ask what exactly Verenyov had written about this arid
branch of mathematics in which he himself had done a little work for one of his
courses. [...] Topology belonged to the stratosphere of human thought. It might
conceivably turn out to be of some use in the twenty-fourth century, but for the
time being...”
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Persistent homology

Vietoris-Rips complex calculation
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Given € € R, the Vietoris-Rips complex contains all simplices whose pairwise distance is less
than or equal to €. When using Euclidean balls of radius » = 0.5¢, a simplex is created for
each pairwise intersection.
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Persistent homology

Vietoris-Rips complex calculation

Given € € R, the Vietoris-Rips complex contains all simplices whose pairwise distance is less
than or equal to €. When using Euclidean balls of radius » = 0.5¢, a simplex is created for
each pairwise intersection.
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Distances between persistence diagrams

Bottleneck distance
W (D1, D7) := inf  sup [|[x — 7(X) ||
n: Dl *)Dz x€D1
2 |
%
w 1 *
“ ‘2
0 |
T T T
0 1 2
€
ETHziirich Topo resentation Learning for Structured and Unstructured Data  Bastian Rieck >seudomanifold  18th February 2021 3/3



https://twitter.com/Pseudomanifold

Distances between persistence diagrams

Bottleneck distance
W (D1, D7) := inf  sup [|[x — 7(X) ||
n: D] *}DZ XGDl
2 /
/
w 1 /
%
0 |
I I I
0 1 2
€
ETH7iirich Basti 18th February 2021 3/34



https://twitter.com/Pseudomanifold

Stability theorem

Robustness to small-scale perturbations

Let M be a triangulable space with continuous tame functions f,g: M — R. Then
the corresponding persistence diagrams satisfy We, (Df, Dy) < || f — | o-
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Stability theorem
Robustness to small-scale perturbations
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Implications for machine learning

Need to be careful when working with mini-batches Mofa point cloud M. As an
example, consider a point cloud with 100 points (normally-distributed in R?) and 50

subsamples of varying size m.

30 40 50 60 70 80
Mini-batch size m

T
90 100
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Bridging the chasm

e Persistent homology is inherently discrete
e Deep learning is inherently continuous

Challenge

Can we make the calculation of a persistence diagram differentiable, in particular if
we have some control over the input space M?
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Making persistent homology differentiable

Terminology

Let f: M — R be a function on a manifold. Persistent homology can be seen as
amap from (M, f) to {(c;, d;) }iez-

Let S be a map from points in the persistence diagram to simplex pairs (vertices
and edges), i.e. S(c;, d;) = (0;, T;). We write S(-) to denote the map for a single
point.

Depending on the filtration, we can also map a simplex to one of its vertices. For
a sublevel set filtration, we have a map V with V() := argmax ., f(v).

Finally, let P := (P, P;), with P, := V o S(c;) and P; :=V o S(d;).
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Making persistent homology differentiable

Example
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Making persistent homology differentiable

Example
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We have S(0,4) = ({a}, {a,b}).
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Making persistent homology differentiable

Example

f(x)

We have S§(0,4) = ({a},{a,b}).
We have V({a}) = x3and V({a,b}) = xa.
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Making persistent homology differentiable

Example

f(x)

We have S§(0,4) = ({a},{a,b}).
We have V({a}) = x3and V({a,b}) = xa.

We have
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Making persistent homology differentiable

Gradient calculation sketch

o [f the function values are distinct, then P is unique.
o [f the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on 0 = (61,6, ...). We then have f(P:(¢;)) = f(v;) = ¢,
and, since P is constant,

de; _ 9f (Pelei)) _ of(vi) _ of

3. = =o-(0i),
90; 90; 6, a6

i.e. the partial derivative is equivalent to the derivative of the function evaluated at
the image of the map P..

This formulation is due to A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function
Optimization for Continuous Shape Matching’, Computer Graphics Forum 37.5, 2018, pp. 13-25.
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Topological autoencoders

Topological Autoencoders

.

|\

Michael Moor Max Horn Karsten Borgwardt
WMichael_D_Moor W ExpectationMax W kmborgwardt

M. Moor*, M. Horn*, B. Rieck' and K. Borgwardt®, ‘Topological Autoencoders’, ICML,
2020, arXiv: 1906.00722 [cs.LG]
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Topological autoencoders

Motivation
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Topological Representation Learning for Structured and Unstructured Data
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Topological autoencoders

Overview

X X
Input data Reconstruction

: V4

Latent code

Reconstruction loss

Topological loss
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Topological autoencoders

Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss
function!

Why this works in theory

Let X be a point cloud of cardinality 7 and X(") be one subsample of X of cardinality
m, i.e. X(") C X, sampled without replacement. We can bound the probability of the
persistence diagrams of X(") exceeding a threshold in terms of the bottleneck
distance as

P (Ww(p?f DX ) > e) <P (distH<X, X<m>) > 2e> ,

where disty denotes the Hausdorff distance. In other words: mini-batches are
topologically similar if the subsampling is not too coarse.
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Topological autoencoders

Gradient calculation intuition

Distance matrix A

0 1 9 10
1 07 8
9 70 3
10 8 3 0

Every point in the persistence diagram can be mapped to one entry in the distance
matrix! Each entry is a distance, so it can be changed during training (at least in the
latent space).
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Topological autoencoders

Gradient calculation intuition
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Every point in the persistence diagram can be mapped to one entry in the distance

matrix! Each entry is a distance, so it can be changed during training (at least in the
latent space).
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Topological autoencoders

Gradient calculation intuition

Distance matrix A

W, TN
I

Every point in the persistence diagram can be mapped to one entry in the distance
matrix! Each entry is a distance, so it can be changed during training (at least in the
latent space).
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Topological autoencoders

Loss term

Li=Lyz+Lz x
2 2
Lyz = 5||AX[7X] - A% [7X]|| Lzox = 5||A%[”] — AX[7”]]]

e X: input space

Z: latent space
AX: distances in input mini-batch

AZ: distances in latent mini-batch
o 17X: persistence pairing of input mini-batch
e 71t: persistence pairing of latent mini-batch

The loss is bi-directional!
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Qualitative evaluation

‘Spheres’ data set

Autoencoder

t-SNE Topological autoencoder
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Qualitative evaluation

‘Spheres’ data set; zooming in...

Autoencoder Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

f(;v(x) = Z exp(—cf1 dist(x,y)2>,

yeX

where dist denotes a metric such as the Euclidean distance. This is well-defined on
mini-batches and on the full input data set.

Given o, we evaluate KL, := KL(f || f#), which measures the similarity between
the two density distributions.
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Quantitative evaluation

ETHziirich

Method KL0.01 KLO.l

KL; ¢-MRRE ¢-Cont ¢-Trust /-RMSE MSE (data)

Isomap 0.181 0.420 0.00881
PCA 0.332 0.651 0.01530
t-SNE  0.152 0.527 0.01271
UMAP 0.157 0.613 0.01658
AE 0.566 0.746 0.01664
TopoAE 0.085 0.326 0.00694

0.246 0.790
0.294 0.747
0.217 0.773
0.250 0.752
0.349 0.607
0.272 0.822

0.676 104
0.626 11.8 0.9610
0.679 8.1
0.635 9.3

0.588 13.3 0.8155
0.658 13.5 0.8681
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Learning graph filtrations

Graph Filtration Learning

Christoph Hofer Florian Graf Marc Niethammer Roland Kwitt
WMarcNiethammer W rkwitt1982

C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning),
ICML, 2020, arXiv: 1905.10996 [cs.LG]
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Digression

Graph neural networks in a nutshell

Learn node representations /i, based on aggregated attributes 4,

Aggregate them over neighbourhoods

Iteration k contains information up to k hops away

Repeat iteration K times
) .= aggregate® ({hi,k_l) |u e N(v)})
hz(]k) := combine® (hz(,kfl),az(,k))

hg = readout({hz(,K) |ve Q]g})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are
Graph Neural Networks?’, International Conference on Learning Representations, 2019.
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Digression

Message passing in graphs
01

02 U3

04

U5

(43 (%4
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Digression

Message passing in graphs

U1
U2 U3
U4
U5
Vg 07
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Digression

Message passing in graphs
U1

02 U3

v4+ @ aggregate (via ), for example)

U5

(43 (%4
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Digression

Message passing in graphs
01

02 U3

v4+ @ aggregate (via ), for example)

U5

(43 (%4

Repeat this process multiple times and update the vertex representations accordingly.
Use a readout function to obtain a graph-level representation.
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Learning graph filtrations

Motivation

e When classifying graphs with TDA, we often employ a filter function f: 20 — R.
For example, f(v) := deg(v) is commonly employed.

e We typically extend f to a full graph G by setting f({u, v} := max{f(u), f(v)}.
e Can we learn f end-to-end?
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A readout function based on persistent homology

Yany

(n times)

{(ci,di) Yiez

‘ persistent_homology ‘
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A readout function based on persistent homology

Gradient exists

-

{(ci,di) Yiez

‘ persistent_homology ‘
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A readout function based on persistent homology

Gradient exists

-

{(ci,di) Yiez

‘ persistent_homology ‘
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Coordinatisation function

Use a differentiable coordinatisation scheme of the form ¥: D — R. Letting
p := (a,b) denote a tuple in a persistence diagram, we have

1 1
Y = — ,
W)= T el ~ T abstr—Tlp—<ll)

with ¢ € R? and r € R~ being trainable parameters. The whole diagram is
represented as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a
persistence diagram into R".
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How to initialise f?

Use a single GIN-¢ layer with one level of message passing (1-GIN) with hidden

dimensionality 64, followed by a two-layer MLP.

GIN-1,h = 64

—

MLP(64,64,1) with sigmoid activation

Hence, f: U — [0,1].

We can initialise f using the vertex degree or uniform weights (plus a symbolic

perturbation to ensure gradient existence).
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Using this in practice

e If f is injective on the graph vertices, the gradient exists.

e We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

e Simple integration into existing architectures.
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Using this in practice

e If f is injective on the graph vertices, the gradient exists.

e We can initialise f using the vertex degree or uniform weights (plus a symbolic
perturbation to ensure gradient existence).

e Simple integration into existing architectures.

Method IMDB-BINARY IMDB-MULTI
1-GIN (GFL) 74.54+4.6 49.7+2.9
1-GIN (SuM) 73.5+3.8 50.3+2.6
1-GIN (SP) 73.0+4.0 50.5+2.1
Baseline 72.7+4.6 49.94+4.0
PH 68.9+3.5 46.1+4.2
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Topological layers for graph classification

Max Horn Edward De Brouwer Michael Moor
W ExpectationMax W EdwardOnBrew W Michael_D_Moor

|

Yves Moreau  Karsten Borgwardt
W kmborgwardt

M. Horn*, E. De Brouwer*, M. Moor, Y. Moreau, B. Rieck** and K. Borgwardt!,
Topological Graph Neural Networks, 2021, arXiv: 2102.07835 [cs.LG]
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Topological graph neural networks

Overview
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Expressivity

Cycles data set
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Expressivity

Necklaces data set
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Empirical results

ETHziirich

Method PROTEINS-full ENZYMES DD IMDB-BINARY REDDIT-BINARY
GAT-4 76.3+24 685+£52 759+38 — —
GATED-GCN-4 764+29 65.7+49 729+21 — —
GCN-4 76.1+24 65.8+4.6 728+4.1 68.6 4.9 928 £1.7
GIN-4 741+3.4 65.3£68 719439 729 +47 89.8 £22
TopoGNN-3-1 76.0£3.9 53.0+92 732447 720+23 89.4+2.2
WL 73.1+£0.5 543+09 77.7+£20 712+£0.5 78.0+£0.6
WL-OA 73.5+0.9 589+09 77.8+12 74.0£0.7 87.6 0.3
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Empirical results
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NOT GRERT
NOT TERRIBLE
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Empirical results

Only random node features

Proteins
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Summary

Persistent homology can be made differentiable!

Topological features improve representation learning tasks.

Often, the main performance drive is unclear; we need ablation studies that
disentangle performance.

Hybrid models show particular promise for graph classification.

¥ My main co-authors Christian, Christoph, Edward, Karsten, Max, Michael, Roland.
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