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Persistent homology
Vietoris–Rips complex calculation
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Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Persistent homology
Vietoris–Rips complex calculation

0 0.5 1 1.5 2

0

0.5

1

1.5

2

ε

ε

Given ε ∈R, the Vietoris–Rips complex contains all simplices whose pairwise distance is less than or equal
to ε. When using Euclidean balls of radius r = 0.5ε, a simplex is created for each pairwise intersection.

Topological Representation Learning Bastian Rieck 1/33



Motivation

So far, however, persistent homology is used in a passive manner, meaning that the function f
mapping simplices toR is fixed and not informed by the learning task.1

1C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, ed. by H. Daumé III
and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020, pp. 4314–4323.
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Making persistent homology differentiable
Terminology

� Let f : M→R be a function on a manifold. Persistent homology can be seen as a map from
(M, f ) to {(ci ,di )}i∈I .

� Let S be a map from points in the persistence diagram to simplex pairs (vertices and
edges), i.e. S (ci ,di ) = (σi ,τi ). We write S (·) to denote the map for a single point.

� Depending on the filtration, we can also map a simplex to one of its vertices. For a sublevel
set filtration, we have a map V with V (σ) := argmaxv∈σ f (v).

� Finally, let P := (Pc ,Pd ), with Pc := V ◦S (ci ) and Pd := V ◦S (di ).
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Making persistent homology differentiable
Example
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We have S (0,4) = ({a}, {a,b}).

We have V ({a}) = x3 and V ({a,b}) = x4.

We have P (0,4) = (V ◦S )(0,4) = (x3, x4).
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Making persistent homology differentiable
Gradient calculation sketch

� If the function values are distinct, then P is unique.
� If the function values are distinct, then P is constant in some neighbourhood.

Assume that f depends on θ = (θ1,θ2, . . . ). We then have f (Pc (ci )) = f (vi ) = ci , and, since P

is constant,
∂ci

∂θ j
= ∂ f (Pc (ci ))

∂θ j
= ∂ f (vi )

∂θ j
= ∂ f

∂θ j
(vi ) ,

i.e. the partial derivative is equivalent to the derivative of the function evaluated at the image of
the map Pc .

This formulation is due to A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function Optimization for
Continuous Shape Matching’, Computer Graphics Forum 37.5, 2018, pp. 13–25. Similar ideas occurred first in M. Gameiro,
Y. Hiraoka and I. Obayashi, ‘Continuation of point clouds via persistence diagrams’, Physica D: Nonlinear Phenomena 334,
2016, pp. 118–132.
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Extensions

Persistent homology calculations can be made differentiable and many general classes of
topology-based optimisation schemes can be proven to converge!

M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda, ‘Optimizing persistent homology based functions’,
ICML, ed. by M. Meila and T. Zhang, Proceedings of Machine Learning Research 139, PMLR, 2021, pp. 1294–1303
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Part I: Unstructured Data



Topological autoencoders

Topological Autoencoders

Michael Moor † 1 2 Max Horn † 1 2 Bastian Rieck ‡ 1 2 Karsten Borgwardt ‡ 1 2

Abstract

We propose a novel approach for preserving topo-
logical structures of the input space in latent rep-
resentations of autoencoders. Using persistent ho-
mology, a technique from topological data analy-
sis, we calculate topological signatures of both the
input and latent space to derive a topological loss
term. Under weak theoretical assumptions, we
construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale con-
nectivity information. We show that our approach
is theoretically well-founded and that it exhibits
favourable latent representations on a synthetic
manifold as well as on real-world image data sets,
while preserving low reconstruction errors.

1. Introduction
While topological features, in particular multi-scale features
derived from persistent homology, have seen increasing use
in the machine learning community (Carrière et al., 2019,
Guss & Salakhutdinov, 2018, Hofer et al., 2017, 2019a,b,
Ramamurthy et al., 2019, Reininghaus et al., 2015, Rieck
et al., 2019a,b), employing topology directly as a constraint
for modern deep learning methods remains a challenge. This
is due to the inherently discrete nature of these computa-
tions, making backpropagation through the computation of
topological signatures immensely difficult or only possible
in certain special circumstances (Chen et al., 2019, Hofer
et al., 2019a, Poulenard et al., 2018).

This work presents a novel approach that permits obtaining
gradients during the computation of topological signatures.
This makes it possible to employ topological constraints
while training deep neural networks, as well as building
topology-preserving autoencoders. Specifically, we make

†Equal contribution. ‡These authors jointly directed this
work. 1Department of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland 2SIB Swiss Institute of Bioin-
formatics, Switzerland. Correspondence to: Karsten Borgwardt
<karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the following contributions:

1. We develop a new topological loss term for autoen-
coders that helps harmonise the topology of the data
space with the topology of the latent space.

2. We prove that our approach is stable on the level of
mini-batches, resulting in suitable approximations of
the persistent homology of a data set.

3. We empirically demonstrate that our loss term aids
in dimensionality reduction by preserving topological
structures in data sets; in particular, the learned latent
representations are useful in that the preservation of
topological structures can improve interpretability.

2. Background: Persistent Homology
Persistent homology (Barannikov, 1994, Edelsbrunner &
Harer, 2008) is a method from the field of computational
topology, which develops tools for analysing topological fea-
tures (connectivity-based features such as connected com-
ponents) of data sets. We first introduce the underlying
concept of simplicial homology. For a simplicial complex
K, i.e. a generalised graph with higher-order connectivity
information such as cliques, simplicial homology employs
matrix reduction algorithms to assign K a family of groups,
the homology groups. The dth homology group Hd(K) of
K contains d-dimensional topological features, such as con-
nected components (d = 0), cycles/tunnels (d = 1), and
voids (d = 2). Homology groups are typically summarised
by their ranks, thereby obtaining a simple invariant “signa-
ture” of a manifold. For example, a circle in R2 has one
feature with d = 1 (a cycle), and one feature with d = 0 (a
connected component).

In practice, the underlying manifoldM is unknown and we
are working with a point cloud X := {x1, . . . , xn} ⊆ Rd
and a metric dist : X × X → R such as the Euclidean
distance. Persistent homology extends simplicial homol-
ogy to this setting: instead of approximatingM by means
of a single simplicial complex, which would be an unsta-
ble procedure due to the discrete nature of X , persistent
homology tracks changes in the homology groups over mul-
tiple scales of the metric. This is achieved by construct-
ing a special simplicial complex, the Vietoris–Rips com-
plex (Vietoris, 1927). For 0 ≤ ε < ∞, the Vietoris–Rips
complex of X at scale ε, denoted by Rε(X), contains all

Michael Moor Max Horn Karsten Borgwardt
� Michael_D_Moor � ExpectationMax � kmborgwardt

M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, ICML, ed. by
H. Daumé III and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020,
pp. 7045–7054
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Topological autoencoders
Motivation
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Topological autoencoders
Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ε

ε

ε

ε
Topological loss
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Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3

10 8 3 0
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Every point in the persistence diagram can be mapped to one entry in the distance matrix! Each
entry is a distance, so it can be changed during training (at least in the latent space).
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Topological autoencoders
Loss term

L t :=L X→Z +L Z→X

L X→Z := 1
2

∥∥AX
[
πX

]−AZ
[
πX

]∥∥2
L Z→X := 1

2

∥∥AZ
[
πZ

]−AX
[
πZ

]∥∥2

� X : input space
� Z : latent space
� AX : distances in input mini-batch
� AZ : distances in latent mini-batch
� πX : persistence pairing of input mini-batch
� πZ : persistence pairing of latent mini-batch

The loss is bi-directional!
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Qualitative evaluation
‘Spheres’ data set

PCA UMAP Autoencoder

Isomap t-SNE Topological autoencoder
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Qualitative evaluation
‘Spheres’ data set; zooming in…

Autoencoder Topological autoencoder
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A new evaluation metric

Use distance to a measure density estimator, i.e.

f X
σ (x) := ∑

y∈X

exp
(
−σ−1 dist

(
x, y

)2
)
,

where dist denotes a metric such as the Euclidean distance. This is well-defined on mini-batches
and on the full input data set.

Givenσ, we evaluate KLσ := KL
(

f X
σ ∥ f Z

σ

)
, which measures the similarity between the two

density distributions.
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Quantitative evaluation

Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE MSE (data)

Isomap 0.181 0.420 0.008 81 0.246 0.790 0.676 10.4
PCA 0.332 0.651 0.015 30 0.294 0.747 0.626 11.8 0.9610
t-SNE 0.152 0.527 0.012 71 0.217 0.773 0.679 8.1
UMAP 0.157 0.613 0.016 58 0.250 0.752 0.635 9.3
AE 0.566 0.746 0.016 64 0.349 0.607 0.588 13.3 0.8155
TopoAE 0.085 0.326 0.006 94 0.272 0.822 0.658 13.5 0.8681
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Flexibility of this loss term

class TopologicalAutoencoder(torch.nn.Module):

def __init__(self, model, lam=1.0):

super().__init__()

self.lam = lam

self.model = model

self.loss = SignatureLoss(p=2)

self.vr = VietorisRipsComplex()

def forward(self, x):

z = self.model.encode(x)

pi_x = self.vr(x)

pi_z = self.vr(z)

geom_loss = self.model(x)

topo_loss = self.loss([x, pi_x], [z, pi_z])

loss = geom_loss + self.lam * topo_loss

return loss
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Part II: Structured Data



Graph classification
Example

Potential labels
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How to represent graphs?

� Two graphs G and G′ can have a different number of vertices.
� Hence, we require a vectorised representation f : G →Rd of graphs.
� Such a representation f needs to be permutation-invariant.

Topological Representation Learning Bastian Rieck 18/33



Message passing
The predominant paradigm in graph machine learning

Neighbouring nodes can exchange messages. If this is iterated, messages can be ‘diffused’ to larger
parts of the graph.

A

B C

D

E

F G

aggregate (sum, mean, …)

� Operations remain local.
� Message passing can be iterated.
� Need to define aggregation function.
� Representations can be combined.
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Graph neural networks in a nutshell

� Learn node representations hv based on aggregated attributes av .
� Aggregate them over neighbourhoods.
� Iteration k contains information up to k hops away.
� Repeat procedure K times.

a(k)
v := aggregate(k)

({
h(k−1)

u | u ∈NG(v)
})

h(k)
v := combine(k)

(
h(k−1)

v , a(k)
v

)
hG := readout

({
h(K )

v | v ∈ VG
})

This terminology follows K. Xu, W. Hu, J. Leskovec and S. Jegelka, ‘How Powerful are Graph Neural
Networks?’, ICLR, 2019.
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A topological layer for graph classification
M. Horn∗, E. De Brouwer∗, M. Moor, Y. Moreau, B. Rieck† and K. Borgwardt†, ‘Topological Graph Neural Networks’, ICLR, 2022

Topological Graph Neural Networks

Max Horn1, 2, ∗ Edward De Brouwer3, ∗ Michael Moor1, 2 Yves Moreau3

Bastian Rieck1, 2, ∗, † Karsten Borgwardt1, 2, †

1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, Switzerland

3ESAT-STADIUS, KU LEUVEN, 3001 Leuven, Belgium
∗These authors contributed equally.

†These authors jointly supervised this work.

Abstract

Graph neural networks (GNNs) are a powerful architecture for tackling graph learning tasks, yet
have been shown to be oblivious to eminent substructures, such as cycles. We present TOGL, a
novel layer that incorporates global topological information of a graph using persistent homology.
TOGL can be easily integrated into any type of GNN and is strictly more expressive in terms of
the Weisfeiler–Lehman test of isomorphism. Augmenting GNNs with our layer leads to beneficial
predictive performance for graph and node classification tasks, both on synthetic data sets, which can
be classified by humans using their topology but not by ordinary GNNs, and on real-world data.

1. Introduction

Graphs are a natural description of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address graph learning problems
such as graph classification or node classification. Graph neural networks (GNNs) describe a flexible set of
architectures for graph learning tasks and have seen many successful applications over recent years [50].
At their core, many GNNs are based on iterative message passing schemes. Since these schemes are
collating information over the neighbours of every node, GNNs cannot necessarily capture certain
simple topological structures in graphs, such as cycles [8]. These structures, however, are relevant
for certain applications, such as the analysis of molecular graphs, whose classification necessitates
knowledge about connectivity information [29, 46].

By contrast, methods based on topological features, commonly summarised under the term of
topological data analysis (TDA), have shown promising results in machine learning tasks. Focusing
on coarse structures—such as the presence or absence of cycles—they can be used to provide multi-
scale representations that capture the shape of complex structured and unstructured data sets. In this
paper, we propose a Topological Graph Layer (TOGL) that can be easily integrated into any GNN to
make it ‘topology-aware’. We thus obtain a generic way to augment existing GNNs and increase their
expressivity in graph learning tasks. Figure 1 provides a motivational example that showcases the
potential benefits of using topological information: high predictive performance is reached earlier for a
smaller number of layers.
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Topological graph neural networks
Overview

x(v) ∈Rd

Node attributes

2 1

2 1 = a(v)
k

1 …

3 1

1 2 = a(v)
1

2

k views

…

Diagrams

Ψ[v]

+

x(v)

x̃(v)

Aggregation

x̃(v) ∈Rd

Output x̃(v)

Φ Ψ

� Use a node mapΦ : Rd →Rk to create k different filtrations of the graph.
� Use a coordinatisation functionΨ to create compatible representations of the node

attributes.
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ChoosingΦ andΨ

� The node mapΦ can be realised using a neural network.
� The coordinatisation functionΨ can be realised using any vectorisation of persistence

diagrams (landscapes, images, …), but we found a differentiable coordinatisation function to be
most effective.2

2C. D. Hofer, F. Graf, B. Rieck, M. Niethammer and R. Kwitt, ‘Graph Filtration Learning’, ICML, ed. by H. Daumé III
and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020, pp. 4314–4323.
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Expressivity of TOGL

Context
Typical GNN architectures are no more expressive than the Weisfeiler–Lehman test for graph
isomorphism, commonly abbreviated as WL[1].

Theorem
TOGL (and persistent homology) is more expressive than WL[1], i.e. (i) if the WL[1] label sequences for
two graphs G and G ′ diverge, there exists an injective filtration f such that the corresponding persistence
diagrams D0 and D′

0 are not equal, and (ii) there are graphs that WL[1] cannot distinguish but TOGL can!

Example graphs

G G′
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Experiments

� Take existing GNN architecture.
� Replace one layer by TOGL.
� Measure predictive performance.

This strategy ensures that the number of parameters is approximately the same, thus facilitating
a fair comparison!
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Synthetic data sets

Binary classification problem; generate same number of graphs for each of the classes. Use
simple topological structures that are nevertheless challenging to detect with standard GNNs.

Cycles Necklaces
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Expressivity
Cycles data set
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Expressivity
Necklaces data set
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Classifying graphs/nodes based on structural features alone

Existing data sets tend to ‘leak’ information into node attributes, thus decreasing the utility of
topological features. Hence, we replaced all node features by random ones.

Graph classification

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0±3.6 22.0±3.3 76.2±0.5 68.8±2.8
GCN-3-TOGL-1 75.1 ±2.1 30.3±6.5 84.8±0.4 73.8±4.3

GIN-4 75.6±2.8 21.3±6.5 83.4±0.9 74.6±3.1
GIN-3-TOGL-1 76.2±2.4 23.7±6.9 84.4±1.1 73.9±4.9

GAT-4 63.3±3.7 21.7±2.9 63.2±10.4 67.5±2.6
GAT-3-TOGL-1 75.7±2.1 23.5±6.1 77.2±10.5 72.4±4.6

Node classification

Pattern

85.5±0.4
86.6±0.1

84.8±0.0
86.7±0.1

73.1 ±1.9
59.6±3.3
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Classifying benchmark data sets

While we improve baseline classification performance, the best performance is not driven by the
availability of topological structures!

Graph classification

Method CIFAR-10 DD ENZYMES MNIST PROTEINS-full IMDB-B REDDIT-B

GATED-GCN-4 67.3±0.3 72.9±2.1 65.7±4.9 97.3±0.1 76.4±2.9 — —
WL — 77.7±2.0 54.3±0.9 — 73.1 ±0.5 71.2±0.5 78.0±0.6
WL-OA — 77.8±1.2 58.9±0.9 — 73.5±0.9 74.0±0.7 87.6±0.3

GCN-4 54.2±1.5 72.8±4.1 65.8±4.6 90.0±0.3 76.1 ±2.4 68.6±4.9 92.8±1.7
GCN-3-TOGL-1 61.7±1.0 73.2±4.7 53.0±9.2 95.5±0.2 76.0±3.9 72.0±2.3 89.4±2.2

7.5 0.4 −12.8 5.5 −0.1 3.4 −3.4

GIN-4 54.8±1.4 70.8±3.8 50.0±12.3 96.1 ±0.3 72.3±3.3 72.8±2.5 81.7±6.9
GIN-3-TOGL-1 61.3±0.4 75.2±4.2 43.8±7.9 96.1 ±0.1 73.6±4.8 74.2±4.2 89.7±2.5

6.5 4.4 −6.2 0.0 1.3 1.4 8.0

GAT-4 57.4±0.6 71.1 ±3.1 26.8±4.1 94.1 ±0.3 71.3±5.4 73.2±4.1 44.2±6.6
GAT-3-TOGL-1 63.9±1.2 73.7±2.9 51.5±7.3 95.9±0.3 75.2±3.9 70.8±8.0 89.5±8.7

6.5 2.6 24.7 1.8 3.9 −2.4 45.3

Node classification

CLUSTER

60.4±0.4
—
—

57.0±0.9
60.4±0.2

3.4

58.5±0.1
60.4±0.2

1.9

56.6±0.4
58.4±3.7

1.8
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Comparison with other topology-based methods

Using a very simple GCN with TOGL still exhibits favourable performance in comparison to other
topology-based methods.

Method REDDIT-5K IMDB-MULTI NCI1 REDDIT-B IMDB-B

GFL 55.7±2.1 49.7±2.9 71.2±2.1 90.2±2.8 74.5±4.6
PersLay 55.6 48.8 73.5 — 71.2

GCN-1-TOGL-1 56.1 ±1.8 52.0±4.0 75.8±1.8 90.1 ±0.8 74.3±3.6

Topological Representation Learning Bastian Rieck 31/33



Conclusion

� ‘If all you have is nails, everything looks like a hammer.’3 Our data sets may actually stymie
progress in GNN research because their classification does not necessarily require
structural information.

� Nevertheless, higher-order structures (such as cliques) can be crucial in discerning between
different graphs or data sets.

� Can we also learn sparse filtrations?
� Large untapped potential in topology-based optimisation methods!

3Credit: Mikael Vejdemo-Johannson
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Do you like ML and Topology?

ICLR Workshop on Geometrical and Topological Representation Learning
https://gt-rl.github.io; deadline: Feb 25, AoE

Software
https://github.com/aidos-lab/pytorch-topological

Looking for additional contributors!
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