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Induction
AI imitating art

The Memory of Persistence Bastian Rieck 1/30



Algebraic Topology: Counts & Calculations



What is algebraic topology?

Develop invariants that classify topological spaces up to homeomorphism.

Use tools from algebra to study topological spaces.
Understand shapes through calculations.

The Memory of Persistence Bastian Rieck 2/30



What is algebraic topology?

Develop invariants that classify topological spaces up to homeomorphism.
Use tools from algebra to study topological spaces.

Understand shapes through calculations.

The Memory of Persistence Bastian Rieck 2/30



What is algebraic topology?

Develop invariants that classify topological spaces up to homeomorphism.
Use tools from algebra to study topological spaces.
Understand shapes through calculations.

The Memory of Persistence Bastian Rieck 2/30



A first taste
Seven Bridges of Königsberg

Is there a walk through the city that crosses every bridge exactly once?

A B

C

D

EF
G

No such walk can exist because there are more than two vertices with odd degree!
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Simple invariants
Euler characteristic

The Euler characteristic of a polyhedron is defined as𝜒 ∶= 𝑉 −𝐸+𝐹, where𝑉 is the number of
vertices,𝐸 is the number of edges, and𝐹 is the number of faces, respectively.

Theorem
The Euler characteristic of every Platonic solid is𝜒 = 2.
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Simple invariants
Euler characteristic, continued

Space 𝑉 𝐸 𝐹 𝜒

Tetrahedron 4 6 4 2
Hexahedron 8 12 6 2
Octahedron 6 12 8 2
Dodecahedron 20 30 12 2
Icosahedron 12 30 20 2
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Simple invariants
Betti numbers

The 𝑑th Betti number counts the number
of 𝑑-dimensional holes. It can be used to
distinguish between spaces.

𝑑 = 0: connected components
𝑑 = 1: cycles
𝑑 = 2: voids

Space 𝛽0 𝛽1 𝛽2

Point 1 0 0

Cube 1 0 1

Sphere 1 0 1

Torus 1 2 1
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Computational Topology: (Point) Cloud Atlas



Reality is often messy…
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Representing spaces
Triangulations
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Representing spaces
Triangulations

Theorem
Every smooth manifold can be triangulated.

� S. S. Cairns, ‘Triangulation of the Manifold of Class One’, Bulletin of the American Mathematical
Society 41.8, 1935, pp. 549–552

� J. H. C. Whitehead, ‘On𝐶 1-Complexes’, Annals of Mathematics 41.4, 1940, pp. 809–824
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Persistent homology
‘Points cross scales like clouds cross the sky’

Approximate a point cloud at different scales and observe how topological features appear and
disappear.
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Persistent homology
Formalisation

We formalize a notion of topological simplification within the
framework of a filtration, which is the history of a growing
complex. We classify a topological change that happens during
growth as either a feature or noise depending on its life-time
or persistence within the filtration. We give fast algorithms
for computing persistence and experimental evidence for their
speed and utility.

H. Edelsbrunner, D. Letscher and A. J. Zomorodian, ‘Topological persistence and simplification’, Discrete &
Computational Geometry 28.4, 2002, pp. 511–533

The Memory of Persistence Bastian Rieck 10/30



Other formulations

On résiste à l’invasion des armées; on ne résiste pas à l’invasion des idées. (Victor Hugo)

� P. Frosini, ‘A Distance for Similarity Classes of Submanifolds of a Euclidean Space’, Bulletin of
the Australian Mathematical Society 42.3, 1990, pp. 407–415

� S. A. Barannikov, ‘The Framed Morse Complex and its Invariants’, Advances in Soviet Mathemat-
ics 21, 1994, pp. 93–115

� F. Cagliari, M. Ferri and P. Pozzi, ‘Size Functions from a Categorical Viewpoint’, Acta Applicandae
Mathematica 67.3, 2001, pp. 225–235
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One pipeline to rule them all?

Point cloud

Persistent homology Persistence diagram(s) Machine learning

� A. Poulenard, P. Skraba and M. Ovsjanikov, ‘Topological Function Optimization for Continuous Shape Matching’,
Computer Graphics Forum 37.5, 2018, pp. 13–25

� M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, ‘Topological Autoencoders’, Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020, pp. 7045–7054, arXiv: 1906.00722 [cs.LG]

� M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda, ‘Optimizing persistent homology based
functions’, Proceedings of the 38th International Conference on Machine Learning (ICML), 2021, pp. 1294–1303
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But wait, there’s more…

Graphs

Time series

Persistent homology provides us with a new paradigm for thinking about data.

Data has shape, shape has meaning, and persistent homology helps us extract it.
(paraphrasing Gunnar Carlsson)
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Cambrian explosion?
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Data taken from OpenAlex (https://openalex.org) for the concept of ‘persistent homology.’
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Challenges from a 2019 talk

Improving performance Escaping flatland First-class architectures

Images used with kind permission from Prof. A. T. Fomenko; these drawings are also found in the marvellous book
Homotopic Topology.
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Where are we now?



Performance
Persistent Homology Transform

Capturing shape without multifiltrations

Calculate filtration of a shape𝑀 ⊂R𝑑 for a ‘height’ 𝑟 ∈R as𝑀(𝑣,𝑟) ∶= {𝑥 ∈𝑀 ∣ ⟨𝑥,𝑣⟩ ≤ 𝑟},
where 𝑣 ∈ S𝑑−1 and ⟨⋅, ⋅⟩ denotes an inner product.

K. Turner, S. Mukherjee and D. M. Boyer, ‘Persistent Homology Transform for Modeling Shapes and Surfaces’,
Information and Inference 3.4, 2014, pp. 310–344
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Performance
Euler Characteristic Curves & Filtration Curves

We can evaluate a real-valued function 𝑓 alongside a filtration, thus leading to a set of
‘characteristic curves.’

0 2 4
𝜖

𝑓

0 2 4
𝜖

𝑓

L. O’Bray∗, B. Rieck∗ and K. Borgwardt, ‘Filtration Curves for Graph Representation’, Proceedings of the 27th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD), New York, NY, USA: Association for Computing
Machinery, 2021, pp. 1267–1275
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Subsampling strategies

We can infer a lot of (topological) information from random samples of the data, and use this to
perform topology-driven optimisation!

E. Solomon, A. Wagner and P. Bendich, ‘From Geometry to Topology: Inverse Theorems for Distributed Persistence’,
38th International Symposium on Computational Geometry (SoCG 2022), ed. by X. Goaoc and M. Kerber, vol. 224, Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 61:1–61:16
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Escaping flatland (well, sort of…)

Using full 3D information to improve reconstruction tasks. Can we go higher?

2D Input Model 3D Prediction
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Geometrical loss 3D Ground Truth
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D. J. E. Waibel, S. Atwell, M. Meier, C. Marr and B. Rieck, ‘Capturing Shape Information with Multi-Scale Topological
Loss Terms for 3D Reconstruction’, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022, arXiv:
2203.01703 [cs.CV], in press

The Memory of Persistence Bastian Rieck 19/30

https://arxiv.org/abs/2203.01703


First-class architectures

� C. Hofer, R. Kwitt, M. Niethammer and A. Uhl, ‘Deep learning with topological signatures’,
Advances in Neural Information Processing Systems, ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, vol. 30, Curran Associates, Inc., 2017,
pp. 1633–1643

� M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer and Y. Umeda, ‘PersLay: A Neural Network
Layer for Persistence Diagrams and New Graph Topological Signatures’, Proceedings of the
23rd International Conference on Artificial Intelligence and Statistics, ed. by S. Chiappa and R.
Calandra, vol. 108, Proceedings of Machine Learning Research, PMLR, 2020, pp. 2786–2796

� K. Kim, J. Kim, M. Zaheer, J. Kim, F. Chazal and L. Wasserman, ‘PLLay: Efficient Topological
Layer based on Persistent Landscapes’, Advances in Neural Information Processing Systems, ed.
by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin, vol. 33, Curran Associates, Inc.,
2020, pp. 15965–15977

Lots of progress being made—can we now tackle performance?
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The Beauty of Our Field



My personal journey into topology
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My personal journey into topology

Source: https://abstrusegoose.com/253
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R. J. Daverman and G. A. Venema, Embeddings in Manifolds, vol. 106, Graduate Studies in Mathematics, Providence, RI,
USA: American Mathematical Society, 2009

The Memory of Persistence Bastian Rieck 22/30



R. Ghrist, Elementary Applied Topology, 1.0, Createspace
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R. Ghrist, Elementary Applied Topology, 1.0, Createspace William Blake, ‘The Ancient of Days’

The Memory of Persistence Bastian Rieck 23/30



The Next 20 Years



What we need

Our own data sets.

Harmonised frameworks and reporting.
Users.
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What to avoid

Round about the cauldron go;
In the persistent entrails throw.
Diagram that with many a pair
Makes the network look less bare.
Double, double toil and trouble;
GPU burn and cauldron bubble.

The use of topological features should be justified and assessed carefully.

In M. Horn∗, E. De Brouwer∗, M. Moor, Y. Moreau, B. Rieck† and K. Borgwardt†, ‘Topological Graph Neural Networks’,
International Conference on Learning Representations (ICLR), 2022, arXiv: 2102.07835 [cs.LG], we showed that
topological features are crucial for high predictive performance in graph learning problems.
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Success stories

Topological data analysis is starting to be picked up by other fields. We need to highlight the
value of a topological perspective.
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One way forward

Build bridges to ML topics (explainable ML, generative models, …).

Dismantle obstacles to learning by investing in good explanations.
Focus on intuition and good visualisations.
Geometry and topology are not opposed to each other.

P. Bubenik, M. Hull, D. Patel and B. Whittle, ‘Persistent homology detects curvature’, Inverse Problems 36.2, 2020,
p. 025008
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Theory without practice is empty
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Theory without practice is empty

E. J. Amézquita, M. Y. Quigley, T. Ophelders, E. Munch and D. H. Chitwood, ‘The shape of things to come: Topological
data analysis and biology, from molecules to organisms’, Developmental Dynamics 249.7, 2020, pp. 816–833
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Building a community
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Building a community

Source: Chad Topaz (https://chadtopaz.com/getting-started-with-tda/)
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Building a community

Applied Algebraic Topology Research Network (AATRN)
‘Geometry & Topology in Machine Learning’ Slack
WinCompTop

Let’s build a diverse community! What can we do better? Let me know!
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The end of the Möbius strip

Ten years ago, my first paper on TDA was published.

Almost two years ago, I organised a TDA workshop at NeurIPS 2020.
Now I am here. Wow!

Thank you so much for having me!

� bastian@rieck.me

�
bastian.rieck.me
topology.rocks
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