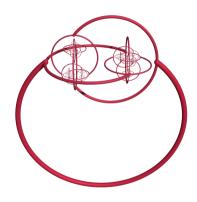
The Many Faces of ManifoldsBastian Rieck

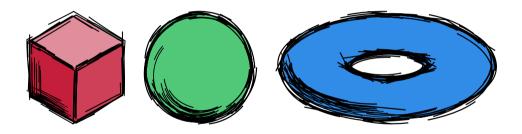
What this talk is not about

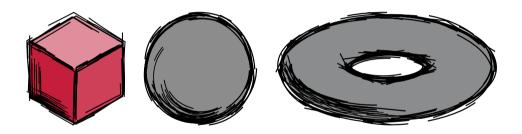
What this talk is about

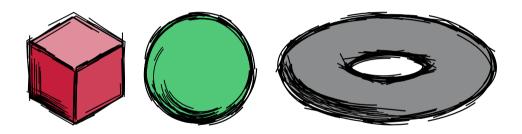
Klein bottle

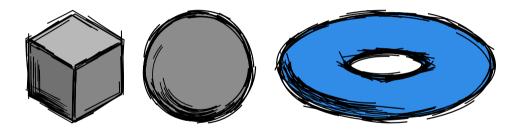


Alexander horned sphere









Informal definition

An object (or a space) that locally looks like some d-dimensional Euclidean space, i.e. we have d independent coordinates to describe our position.

Informal definition

An object (or a space) that locally looks like some d-dimensional Euclidean space, i.e. we have d independent coordinates to describe our position.

d = 1

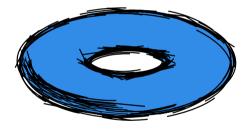
Informal definition

An object (or a space) that locally looks like some d-dimensional Euclidean space, i.e. we have d independent coordinates to describe our position.

d = 2

Informal definition

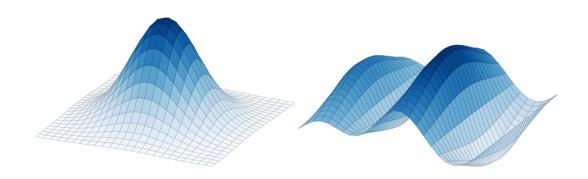
An object (or a space) that locally looks like some d-dimensional Euclidean space, i.e. we have d independent coordinates to describe our position.



d = 2

More manifolds

Let us ignore boundaries for now...



No manifolds, but samples of manifolds

Data analysis

Manifold hypothesis

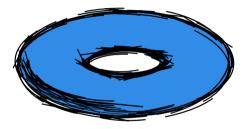
Many people hope that real-world data sets can often be adequately described by one (or more) manifolds.

Questions

- 1 How to distinguish between manifolds?
- 2 How to *classify* manifolds?

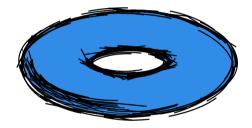
$$eta_0=1$$
, $eta_1=1$

$$\beta_0 = 1$$
, $\beta_1 = 0$, $\beta_2 = 1$



$$\beta_0 = 1$$
, $\beta_1 = 2$, $\beta_2 = 1$

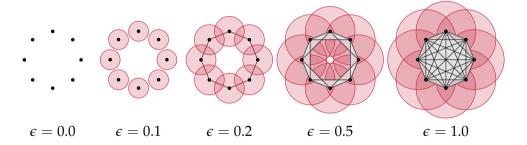
$$\beta_0 = 1$$
, $\beta_1 = 0$, $\beta_2 = 1$

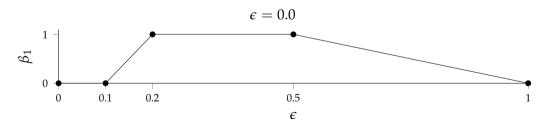


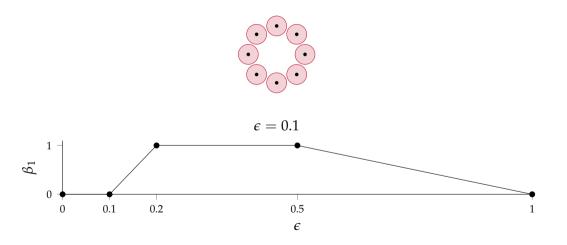
$$\beta_0 = 1$$
, $\beta_1 = 2$, $\beta_2 = 1$

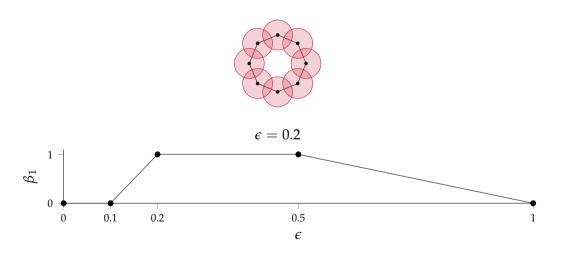
Back to reality

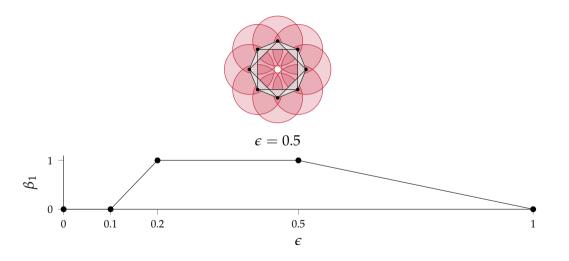
How to approximate the shape of data?

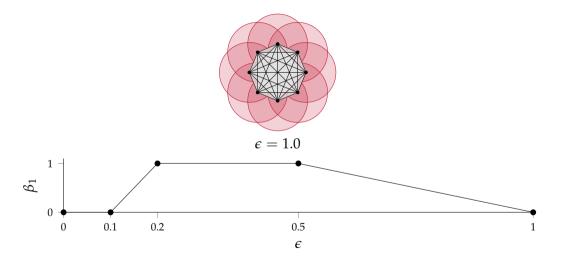












Persistent homology

Homology

Homology refers to similarity that arises from a shared ancestry between a pair of structures or genes in different taxa.

Persistent homology

Homology

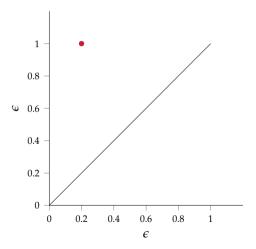
Homology refers to shtwishthy khat/athishet/ft/bl/h/a/shathid/ahchetthy, bletweeth a bait/of \$ttUctUfes bif/\$EthEs/ith/\$iffettethV.taxa a generic way of associating a sequence of algebraic objects, such as (Abelian) groups to other objects, such as topological spaces.

Persistence diagrams

Information about the Betti numbers is stored in a multi-scale topological descriptor. the persistence diagram. Points with a large distance from the diagonal are persistent.

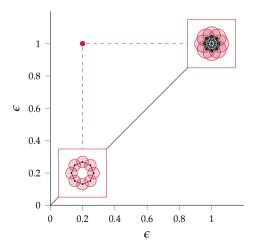
Persistent homology, continued

Example persistence diagram



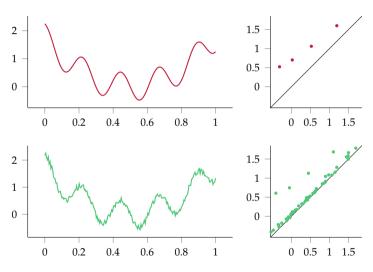
Persistent homology, continued

Example persistence diagram



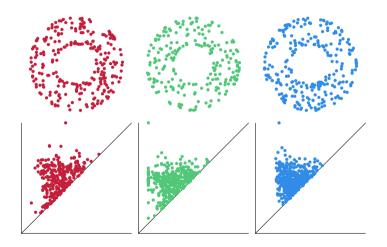
A real-world example

Analysing a function f over \mathbb{R}



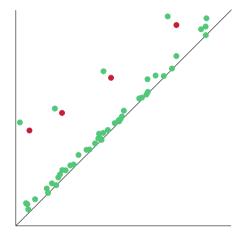
Another real-world example

Analysing the distance function of point clouds in \mathbb{R}^3



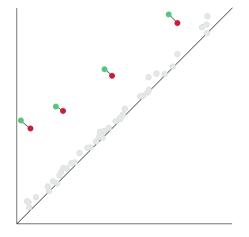
Calculating distances

Optimal transport



Calculating distances

Optimal transport

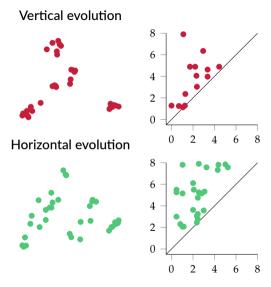


Applications

Topology of viral evolution

- Assess evolutionary behaviour of viruses
- Particularly interested in reticulate evolution
- Perform analysis based on genomic sequences
- Horizontal evolution results in non-trivial 1D topology

Comparing two sets of genomic sequences



Summary

- Manifolds come in many forms, dimensions, and sizes.
- Not everything that is high-dimensional is a manifold.
- 3 Assuming that samples come from some manifold \mathcal{M} can be helpful.
- 4 Topological methods can be useful for describing and understanding data.