A Primer in Topological Data Analysis
 Lecture 1: Computational Topology \& Persistent Homology Bastian Rieck
 Y Pseudomanifold

DBSSE
EHHzürich

What is computational topology?

Which qualities of the sphere make it different from the torus?

Betti numbers

The $d^{\text {th }}$ Betti number counts the number of d-dimensional holes. It can be used to distinguish between spaces.

Space	β_{0}	β_{1}	β_{2}
Point	1	0	0
Cube	1	0	1
Sphere	1	0	1
Torus	1	2	1

Agenda

1 Use simplicial complex to model a space.
2 Define boundary operators and maps.
3 Calculate Betti numbers using matrix reduction.

Simplicial complexes

Definition

We call a non-empty family of sets K with a collection of non-empty subsets S an abstract simplicial complex if:
$1\{v\} \in S$ for all $v \in K$.
2 If $\sigma \in S$ and $\tau \subseteq \sigma$, then $\tau \in \mathrm{K}$.

Terminology

The elements of a simplicial complex K are called simplices. A k-simplex consists of $k+1$ vertices.

Simplicial complexes

Example

Simplicial complexes can be decomposed into their skeletons, which only contain simplices of a certain dimension.

Simplicial complexes

Example

Simplicial complexes can be decomposed into their skeletons, which only contain simplices of a certain dimension.

Simplicial complexes

Example

Simplicial complexes can be decomposed into their skeletons, which only contain simplices of a certain dimension.

Simplicial complexes

Example

Simplicial complexes can be decomposed into their skeletons, which only contain simplices of a certain dimension.

Simplicial complexes

Non-example

This is not a simplicial complex because some higher-dimensional simplices do not intersect in a lower-dimensional one!

Simplicial complexes

More examples

- Graphs can be considered (low-dimensional) simplicial complexes.
- Simplicial complexes can be obtained from point clouds (more about this later).
- Hypergraphs can be converted to simplicial complexes.

Back to simplicial complexes

Chain groups

Definition

Given a simplicial complex K, the $p^{\text {th }}$ chain group C_{p} of K consists of all combinations of p-simplices in the complex. Coefficients are in \mathbb{Z}_{2}, hence all elements of C_{p} are of the form $\sum_{j} \sigma_{j}$, for $\sigma_{j} \in \mathrm{~K}$. The group operation is addition with \mathbb{Z}_{2} coefficients.
\mathbb{Z}_{2} is convenient for implementation reasons because addition can be implemented as symmetric difference. Other choices are possible!

We need chain groups to algebraically express the concept of a boundary.

Simplicial chains

> Let $K=\{\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$. Some valid simplicial 1-chains of K are:

- $\{a, b\}$
- $\{a, c\}$
- $\{b, c\}$
- $\{a, b\}+\{a, c\}$
- $\{a, b\}+\{b, c\}$
- $\{a, c\}+\{b, c\}$
- $\{b, c\}+\{a, c\}+\{a, b\}$

Boundary homomorphism

Given a simplicial complex K , the $p^{\text {th }}$ boundary homomorphism is a function that assigns each simplex $\sigma=\left\{v_{0}, \ldots, v_{p}\right\} \in \mathrm{K}$ to its boundary:

$$
\partial_{p} \sigma=\sum_{i}\left\{v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{p}\right\}
$$

In the equation above, \widehat{v}_{i} indicates that the set does not contain the $i^{\text {th }}$ vertex. The function $\partial_{p}: C_{p} \rightarrow C_{p-1}$ is thus a homomorphism between the chain groups.

Caveat

With other coefficients, the boundary homomorphism is slightly more complex, involving alternating signs for the different terms. Over \mathbb{Z}_{2}, signs can be ignored.

Boundary homomorphism

Example

Let $\mathrm{K}=\{\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$. The boundary of the triangle is non-trivial:

$$
\partial_{2}\{a, b, c\}=\{b, c\}+\{a, c\}+\{a, b\}
$$

The boundary of its edges is trivial, though, because duplicate simplices cancel each other out:

$$
\begin{aligned}
\partial_{1}(\{b, c\}+\{a, c\}+\{a, b\}) & =\{c\}+\{b\}+\{c\}+\{a\}+\{b\}+\{a\} \\
& =0
\end{aligned}
$$

Chain complex

For all p, we have $\partial_{p-1} \circ \partial_{p}=0$: Boundaries do not have a boundary themselves. This leads to the chain complex:

$$
0 \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0
$$

Cycle and boundary groups

$$
\begin{aligned}
\text { Cycle group } Z_{p} & =\operatorname{ker} \partial_{p} \\
\text { Boundary group } B_{p} & =\operatorname{im} \partial_{p+1}
\end{aligned}
$$

We have $B_{p} \subseteq Z_{p}$ in the group-theoretical sense. In other words, every boundary is also a cycle. These groups are abelian groups.
(The fact that these sets are groups is a consequence of some deep theorems in group theory! Unfortunately, we cannot cover all of these things here...)

Digression

Normal subgroup

Let G be a group and N be a subgroup. N is a normal subgroup if $g n g^{-1} \in N$ for all $g \in G$ and $n \in N$.
For an abelian group, every subgroup is normal!

Definition

Let G be a group and N be a normal subgroup of G. Then the quotient group is defined as $G / N:=\{g N \mid g \in G\}$, partitioning G into equivalence classes. Intuitively, G / N consists of all elements in G that are not in N.

Homology groups \& Betti numbers

The $p^{\text {th }}$ homology group H_{p} is a quotient group, defined by 'removing' cycles that are boundaries from a higher dimension:

$$
H_{p}=Z_{p} / B_{p}=\operatorname{ker} \partial_{p} / \operatorname{im} \partial_{p+1},
$$

With this definition, we may finally calculate the $p^{\text {th }}$ Betti number:

$$
\beta_{p}=\operatorname{rank} H_{p}
$$

The rank is a generating set of the smallest cardinality. We will see how to calculate this easily!

Intuition

Calculate all boundaries, remove the boundaries that come from higher-dimensional objects, and count what is left.

Example

Simplicial complex

$$
\mathrm{K}=\{\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}\}
$$

Notice that K does not contain the 2-simplex $\{a, b, c\}$. Next, we will see how to calculate the boundary matrix of K and its homology groups!

Example

Boundary matrix calculation

$$
M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) b \begin{aligned}
& a b \\
& b c \\
& a c
\end{aligned}
$$

Example

Boundary matrix calculation

Example

Boundary matrix calculation

$$
\begin{gathered}
c \\
a \bullet \quad \bullet b
\end{gathered} M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& a \\
& b \\
& c \\
& a b \\
& a c
\end{aligned}
$$

Example

Boundary matrix calculation

$$
M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) b \begin{aligned}
& a b \\
& b c
\end{aligned}
$$

Example

Boundary matrix calculation

$$
M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
b \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) b \begin{aligned}
& a b \\
& a c
\end{aligned}
$$

Example

Boundary matrix calculation

$$
M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& a \\
& b \\
& a b \\
& b c \\
& a c
\end{aligned}
$$

Example

Boundary matrix calculation

$$
M=\left(\begin{array}{cccccc}
a & b & c & a b & b c & a c \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& a b \\
& b c \\
& a c
\end{aligned}
$$

Example

Dimension 0

To compute H_{0}, we need to calculate $Z_{0}=\operatorname{ker} \partial_{0}$ and $B_{0}=\operatorname{im} \partial_{1}$.

Calculating Z_{0}

We have $Z_{0}=\operatorname{ker} \partial_{0}=\operatorname{span}(\{a\},\{b\},\{c\})$, because each one of these simplices is mapped to zero. Since we cannot express any one of these simplices as a linear combination of the others, we have $Z_{0}=(\mathbb{Z} / 2 \mathbb{Z})^{3}$,

Calculating B_{0}
We have $B_{0}=\operatorname{im} \partial_{1}=\operatorname{span}(\{a\}+\{b\},\{b\}+\{c\},\{a\}+\{c\})$. However, since $\{a\}+\{b\}+\{b\}+\{c\}=\{a\}+\{c\}$, there are only two independent elements, i.e. $\operatorname{im} \partial_{1}=\operatorname{span}(\{a\}+\{b\},\{b\}+\{c\})$. Hence, $B_{0}=(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Example

Dimension 0 , continued

- By definition, $H_{0}=Z_{0} / B_{0}=(\mathbb{Z} / 2 \mathbb{Z})^{3} /(\mathbb{Z} / 2 \mathbb{Z})^{2}=\mathbb{Z} / 2 \mathbb{Z}$.
- Hence, $\beta_{0}=\operatorname{rank} H_{0}=1$.

Intuition

Our calculation tells us that the simplicial complex has a single connected component!

Example

Dimension 1

To compute H_{1}, we need to calculate $Z_{1}=\operatorname{ker} \partial_{1}$ and $B_{1}=\operatorname{im} \partial_{2}$.
Calculating Z_{1}
We have $Z_{1}=\operatorname{ker} \partial_{1}=\operatorname{span}(\{a, b\}+\{b, c\}+\{a, c\})$. This is the only cycle in K; we can verify this by inspection or pure combinatorics. Hence, $Z_{1}=\mathbb{Z} / 2 \mathbb{Z}$.

Calculating B_{1}
There are no 2-simplices in K , so $B_{1}=\operatorname{im} \partial_{2}=\{0\}$.

Example

Dimension 1, continued

- By definition, $H_{1}=Z_{1} / B_{1}=(\mathbb{Z} / 2 \mathbb{Z}) /\{0\}=\mathbb{Z} / 2 \mathbb{Z}$.
- Hence, $\beta_{1}=\operatorname{rank} H_{1}=1$.

Intuition

Our calculation tells us that the simplicial complex has a single cycle!

This is one of the few situations in which a 'division by zero' is well-defined! By the definition of the quotient group, this means we are not removing any elements from the group.

Homology calculations in practice

Smith normal form

Let M be an $n \times m$ matrix with at least one non-zero entry over some field \mathbb{F}. There are invertible matrices S and T such that the matrix product $S M T$ has the form
SMT $=\left(\begin{array}{ccccccc}b_{0} & 0 & 0 & & \cdots & & 0 \\ 0 & b_{1} & 0 & & \cdots & & 0 \\ 0 & 0 & \ddots & & & & 0 \\ \vdots & & & b_{k} & & & \vdots \\ & & & & 0 & & \\ & & & & & \ddots & \\ 0 & & & \cdots & & & 0\end{array}\right)$,
where all the entries b_{i} satisfy $b_{i} \geq 1$ and divide each other, i.e. $b_{i} \mid b_{i+1}$. All b_{i} are unique up to multiplication by a unit.

Homology calculations in practice

1 Calculate boundary operator matrices.
2 Bring each matrix into Smith normal form (similar to Gaussian elimination).
3 Read off description of $p^{\text {th }}$ homology group.

We have:

- $\operatorname{rank} Z_{p}$ is the number of zero columns of the boundary matrix of ∂_{p}.
- $\operatorname{rank} B_{p}$ is the number of non-zero rows of the boundary matrix of ∂_{p+1}.

Going from theory to practice

Going from theory to practice

From point clouds to simplicial complexes

Vietoris-Rips complex

Given a set of points $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and a metric dist such as the Euclidean distance, pick a threshold ϵ and build the Vietoris-Rips complex \mathcal{V}_{ϵ} defined as:

$$
\mathcal{V}_{\epsilon}(\mathcal{X}):=\{\sigma \subseteq \mathcal{X} \mid \forall u, v \in \sigma: \operatorname{dist}(u, v) \leq \epsilon\}
$$

Equivalently, \mathcal{V}_{ϵ} contains all simplices whose diameter is less than or equal to ϵ.

Example

Vietoris-Rips construction

Draw Euclidean balls (circles) of diameter ϵ and create a k-simplex σ for each subset of $k+1$ points that intersect pairwise.

Example

The Betti numbers of a Vietoris-Rips complex

Issues with this approach

- How to pick ϵ ?
- There might not be one 'correct' value for ϵ.
- Computationally inefficient; matrix reduction has to be performed for every simplicial complex.

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Intuition

Go through all scales and track topological features

Filtrations

The Betti number of the data persists over a range of the threshold parameter ϵ. To formalise this, assume that simplices in the Vietoris-Rips complex are added one after the other. This gives rise to a filtration, i.e.

$$
\varnothing=\mathrm{K}_{0} \subseteq \mathrm{~K}_{1} \subseteq \cdots \subseteq \mathrm{~K}_{n-1} \subseteq \mathrm{~K}_{n}=\mathcal{V}_{\epsilon}
$$

where each K_{i} is a valid simplicial subcomplex of \mathcal{V}_{ϵ}.

Chain complexes and filtrations

Since $\mathrm{K}_{i} \subseteq \mathrm{~K}_{j}$ for $i \leq j$, we obtain a sequence of homomorphisms connecting the homology groups of each simplicial complex, i.e.

$$
f_{p}^{i, j}: H_{p}\left(\mathrm{~K}_{i}\right) \rightarrow H_{p}\left(\mathrm{~K}_{j}\right),
$$

which in turn gives rise to a sequence of homology groups, i.e.

$$
0=H_{p}\left(\mathrm{~K}_{0}\right) \xrightarrow{f_{p}^{0,1}} H_{p}\left(\mathrm{~K}_{1}\right) \xrightarrow{f_{p}^{1,2}} \ldots \xrightarrow{f_{p}^{n-2, n-1}} H_{p}\left(\mathrm{~K}_{n-1}\right) \xrightarrow{f_{p}^{n-1, n}} H_{p}\left(\mathrm{~K}_{n}\right)=H_{p}\left(\mathcal{V}_{\epsilon}\right),
$$

with p denoting the dimension of the corresponding homology group.

Persistent homology group

Given two indices $i \leq j$, the $p^{\text {th }}$ persistent homology group $H_{p}^{i, j}$ is defined as

$$
H_{p}^{i, j}:=Z_{p}\left(\mathrm{~K}_{i}\right) /\left(B_{p}\left(\mathrm{~K}_{j}\right) \cap Z_{p}\left(\mathrm{~K}_{i}\right)\right),
$$

which contains all the homology classes of K_{i} that are still present in K_{j}.

Implication

We can calculate a new set of homology groups alongside the filtration and assign a 'duration' to each topological feature.

Persistent homology

Tracking of topological features

- Creation in $\mathrm{K}_{i}: c \in H_{p}\left(\mathrm{~K}_{i}\right)$, but $c \notin H_{p}^{i-1, i}$
- Destruction in $\mathrm{K}_{j}: c$ is created in K_{i}, with $f_{p}^{i, j-1}(c) \notin H_{p}^{i-1, j-1}$ and $f_{p}^{i, j}(c) \in H_{p}^{i-1, j}$

The persistence of a class c that is created in K_{i} and destroyed in K_{j} is defined as

$$
\operatorname{pers}(c):=|\mathrm{w}(j)-\mathrm{w}(i)|,
$$

where $\mathrm{w}: \mathbb{Z} \rightarrow \mathbb{R}$ assigns each simplicial complex of the filtration a weight, such as an associated distance, or an index. Persistence thus measures the 'scale' at which a certain topological feature occurs.

Standard filtrations

The distance filtration

Given a distance metric dist, such as the Euclidean metric, the distance filtration assigns weights based on pairwise distances between points:

$$
\mathrm{w}(\sigma):= \begin{cases}0 & \text { if } \sigma \text { is a vertex } \\ \operatorname{dist}(u, v) & \text { if } \sigma=\{u, v\} \\ \max _{\tau \subseteq \sigma} \mathrm{w}(\tau) & \text { else }\end{cases}
$$

Simplices need to be sorted in ascending order of their weights; in case of a tie, faces precede co-faces.

Persistent homology is capable of preserving distances under random projections ${ }^{1}$.
${ }^{1}$ D. R. Sheehy, 'The Persistent Homology of Distance Functions under Random Projection', Proceedings of the $30^{\text {th }}$ Annual Symposium on Computational Geometry, 2014, pp. 328-334

Example

Boundary matrix calculation alongside a filtration

$$
M=\left(\begin{array}{ccccccc}
a & b & c & a b & b c & a c & a b c \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& a \\
& b \\
& a b \\
& b c \\
& a c \\
& a b c
\end{aligned}
$$

Example

Boundary matrix calculation alongside a filtration

\(a \bullet \quad \bullet b=\left(\begin{array}{ccccccc}a \& b \& c \& a b \& b c \& a c \& a b c

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right) a\)| a |
| :--- |
| b |
| $a b c$ |
| $a b c$ |
| $a b$ |
| a |

Example

Boundary matrix calculation alongside a filtration

\(\left.a \bullet \quad \bullet b=\begin{array}{ccccccc}a \& b \& c \& a b \& b c \& a c \& a b c

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right)\)| $a b$ |
| :--- |
| b |
| $a b c$ |
| $a b c$ |

Example

Boundary matrix calculation alongside a filtration

Example

Boundary matrix calculation alongside a filtration

Example

Boundary matrix calculation alongside a filtration

Example

Boundary matrix calculation alongside a filtration

Example

Boundary matrix calculation alongside a filtration

$$
M=\left(\begin{array}{ccccccc}
a & b & c & a b & b c & a c & a b c \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& a \\
& b \\
& c \\
& a b \\
& a c \\
& a b c
\end{aligned}
$$

Boundary matrix reduction by column operations

Let M be a boundary matrix for $i=1$ do
while $\exists i^{\prime}<i: \operatorname{low}\left(i^{\prime}\right)=\operatorname{low}(i) \neq 0$ do

$$
M(i)=M(i) \oplus M\left(i^{\prime}\right)
$$

end while
end for

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Boundary matrix reduction by column operations

Let M be a boundary matrix for $i=1$ do
while $\exists i^{\prime}<i: \operatorname{low}\left(i^{\prime}\right)=\operatorname{low}(i) \neq 0$ do
$M(i)=M(i) \oplus M\left(i^{\prime}\right)$
end while
end for

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Boundary matrix reduction by column operations

Let M be a boundary matrix for $i=1$ do
while $\exists i^{\prime}<i: \operatorname{low}\left(i^{\prime}\right)=\operatorname{low}(i) \neq 0$ do

$$
M(i)=M(i) \oplus M\left(i^{\prime}\right)
$$

end while
end for

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Boundary matrix reduction by column operations

Let M be a boundary matrix for $i=1$ do
while $\exists i^{\prime}<i: \operatorname{low}\left(i^{\prime}\right)=\operatorname{low}(i) \neq 0$ do

$$
M(i)=M(i) \oplus M\left(i^{\prime}\right)
$$

end while
end for

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Boundary matrix reduction by column operations

Let M be a boundary matrix for $i=1$ do
while $\exists i^{\prime}<i: \operatorname{low}\left(i^{\prime}\right)=\operatorname{low}(i) \neq 0$ do

$$
M(i)=M(i) \oplus M\left(i^{\prime}\right)
$$

end while
end for

$$
M=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Using the reduced boundary matrix

a	b	c	$a b$	$b c$	ac	$a b c$	
	0	0	1	0	0		
0	0	0	1	1	0	0	b
0	0	0	0	1	0	0	c
0	0	0	0	0	0	1	$a b$
0	0	0	0	0	0	1	$b c$
0			0	0	0	1	$a c$
0	0	0	0	0	0	0	$a b c$

- If column i is empty, then σ_{i} is a positive simplex that creates a topological feature.
- If column j is non-empty with $\operatorname{low}(j)=k$, then σ_{j} is a negative simplex that destroys the topological feature created by σ_{k}.
- For example, simplex $a b c$ destroys the cycle created by ac.

Illustrative example

Here, the topological feature is the circle that underlies that data. Since it persists from $\epsilon=0.20$ to $\epsilon=1.0$, its persistence is pers $=1.0-0.20=0.80$.

Topological features and how to track them

Types of topological features

- Dimension 0: connected components
- Dimension 1: cycles
- Dimension 2: voids

Given a topological feature with associated simplicial complexes K_{i} and K_{j}, store the point $(\mathrm{w}(i), \mathrm{w}(j))$ in a persistence diagram.

2)

If a feature is never destroyed, we assign it a weight of ∞.

