A Primer in Topological Data Analysis Lecture 1: Computational Topology & Persistent Homology Bastian Rieck

Pseudomanifold

Which qualities of the sphere make it *different* from the torus?

Betti numbers

The d^{th} Betti number counts the number of d-dimensional holes. It can be used to distinguish between spaces.

- β_0 Connected components
- β_1 Tunnels
- β_2 Voids

Space	β_0	β_1	β_2
Point	1	0	0
Cube	1	0	1
Sphere	1	0	1
Torus	1	2	1

Agenda

- **1** Use *simplicial complex* to model a space.
- **2** Define boundary operators and maps.
- 3 Calculate Betti numbers using matrix reduction.

Definition

We call a non-empty family of sets K with a collection of non-empty subsets S an *abstract simplicial complex* if:

1
$$\{v\} \in S$$
 for all $v \in K$.

2 If
$$\sigma \in S$$
 and $\tau \subseteq \sigma$, then $\tau \in K$.

Terminology

The elements of a simplicial complex K are called *simplices*. A k-simplex consists of k + 1 vertices.

Example

Example

Example

Example

Non-example

This is *not* a simplicial complex because some higher-dimensional simplices do not intersect in a lower-dimensional one!

More examples

- Graphs can be considered (low-dimensional) simplicial complexes.
- Simplicial complexes can be obtained from point clouds (more about this later).
- *Hypergraphs* can be converted to simplicial complexes.

Back to simplicial complexes

Chain groups

Definition

Given a simplicial complex K, the p^{th} chain group C_p of K consists of all combinations of *p*-simplices in the complex. Coefficients are in \mathbb{Z}_2 , hence all elements of C_p are of the form $\sum_j \sigma_j$, for $\sigma_j \in K$. The group operation is addition with \mathbb{Z}_2 coefficients.

 \mathbb{Z}_2 is convenient for implementation reasons because *addition* can be implemented as *symmetric difference*. Other choices are possible!

We need chain groups to algebraically express the concept of a *boundary*.

Simplicial chains

Let $K = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. Some valid simplicial 1-chains of K are:

- {*a*,*b*}
- {*a*,*c*}
- {*b*,*c*}
- $\{a,b\} + \{a,c\}$
- $\{a,b\} + \{b,c\}$
- $\{a,c\} + \{b,c\}$
- $\{b,c\} + \{a,c\} + \{a,b\}$

Boundary homomorphism

Given a simplicial complex K, the p^{th} boundary homomorphism is a function that assigns each simplex $\sigma = \{v_0, \ldots, v_p\} \in K$ to its *boundary*:

$$\partial_p \sigma = \sum_i \{v_0, \dots, \widehat{v}_i, \dots, v_p\}$$

In the equation above, \hat{v}_i indicates that the set does *not* contain the *i*th vertex. The function $\partial_p : C_p \to C_{p-1}$ is thus a homomorphism between the chain groups.

Caveat

With other coefficients, the boundary homomorphism is slightly more complex, involving alternating signs for the different terms. Over \mathbb{Z}_2 , signs can be ignored.

Boundary homomorphism

Example

Let $K = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. The boundary of the triangle is non-trivial:

 $\partial_2\{a,b,c\} = \{b,c\} + \{a,c\} + \{a,b\}$

The boundary of its edges is trivial, though, because duplicate simplices cancel each other out:

$$\partial_1 \left(\{b,c\} + \{a,c\} + \{a,b\} \right) = \{c\} + \{b\} + \{c\} + \{a\} + \{b\} + \{a\} = 0$$

Chain complex

For all p, we have $\partial_{p-1} \circ \partial_p = 0$: Boundaries do not have a boundary themselves. This leads to the chain complex:

$$0 \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

Cycle and boundary groups

Cycle group $Z_p = \ker \partial_p$ Boundary group $B_p = \operatorname{im} \partial_{p+1}$

We have $B_p \subseteq Z_p$ in the group-theoretical sense. In other words, every boundary is also a cycle. These groups are abelian groups.

(The fact that these sets are groups is a consequence of some deep theorems in group theory! Unfortunately, we cannot cover all of these things here...)

Digression

Normal subgroup and quotient group

Normal subgroup

Let G be a group and N be a subgroup. N is a normal subgroup if $gng^{-1} \in N$ for all $g \in G$ and $n \in N$.

For an abelian group, every subgroup is normal!

Definition

Let *G* be a group and *N* be a normal subgroup of *G*. Then the *quotient group* is defined as $G/N := \{gN \mid g \in G\}$, partitioning *G* into equivalence classes. Intuitively, G/N consists of all elements in *G* that are *not* in *N*.

Homology groups & Betti numbers

The p^{th} homology group H_p is a quotient group, defined by 'removing' cycles that are boundaries from a higher dimension:

$$H_p = Z_p / B_p = \ker \partial_p / \operatorname{im} \partial_{p+1},$$

With this definition, we may finally calculate the p^{th} Betti number:

 $\beta_p = \operatorname{rank} H_p$

The rank is a generating set of the smallest cardinality. We will see how to calculate this easily!

Intuition

Calculate all boundaries, remove the boundaries that come from higher-dimensional objects, and count what is left.

Simplicial complex

$$\mathbf{K} = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$$

Notice that K does not contain the 2-simplex $\{a, b, c\}$. Next, we will see how to calculate the boundary matrix of K and its homology groups!

Boundary matrix calculation

а •

Boundary matrix calculation

a ● *b*

a

Boundary matrix calculation

• h

Dimension 0

To compute H_0 , we need to calculate $Z_0 = \ker \partial_0$ and $B_0 = \operatorname{im} \partial_1$.

Calculating Z_0

We have $Z_0 = \ker \partial_0 = \operatorname{span}(\{a\}, \{b\}, \{c\})$, because each one of these simplices is mapped to zero. Since we cannot express any one of these simplices as a linear combination of the others, we have $Z_0 = (\mathbb{Z}/2\mathbb{Z})^3$,

Calculating B_0

We have $B_0 = \operatorname{im} \partial_1 = \operatorname{span}(\{a\} + \{b\}, \{b\} + \{c\}, \{a\} + \{c\})$. However, since $\{a\} + \{b\} + \{b\} + \{c\} = \{a\} + \{c\}$, there are only two independent elements, i.e. $\operatorname{im} \partial_1 = \operatorname{span}(\{a\} + \{b\}, \{b\} + \{c\})$. Hence, $B_0 = (\mathbb{Z}/2\mathbb{Z})^2$.

Dimension 0, continued

- By definition, $H_0 = Z_0 / B_0 = (\mathbb{Z}/2\mathbb{Z})^3 / (\mathbb{Z}/2\mathbb{Z})^2 = \mathbb{Z}/2\mathbb{Z}$.
- Hence, $\beta_0 = \operatorname{rank} H_0 = 1$.

Intuition

Our calculation tells us that the simplicial complex has a *single* connected component!

Dimension 1

To compute H_1 , we need to calculate $Z_1 = \ker \partial_1$ and $B_1 = \operatorname{im} \partial_2$.

Calculating Z_1

We have $Z_1 = \ker \partial_1 = \operatorname{span}(\{a, b\} + \{b, c\} + \{a, c\})$. This is the *only* cycle in K; we can verify this by inspection or pure combinatorics. Hence, $Z_1 = \mathbb{Z}/2\mathbb{Z}$.

Calculating B_1

There are *no* 2-simplices in K, so $B_1 = \operatorname{im} \partial_2 = \{0\}$.

Dimension 1, continued

- By definition, $H_1 = Z_1/B_1 = (\mathbb{Z}/2\mathbb{Z})/\{0\} = \mathbb{Z}/2\mathbb{Z}$.
- Hence, $\beta_1 = \operatorname{rank} H_1 = 1$.

Intuition

Our calculation tells us that the simplicial complex has a *single* cycle!

This is one of the few situations in which a 'division by zero' is well-defined! By the definition of the quotient group, this means we are *not* removing any elements from the group.

Homology calculations in practice

Smith normal form

Let *M* be an $n \times m$ matrix with at least one non-zero entry over some field \mathbb{F} . There are invertible matrices *S* and *T* such that the matrix product *SMT* has the form

$$SMT = egin{pmatrix} b_0 & 0 & 0 & \cdots & 0 \ 0 & b_1 & 0 & \cdots & 0 \ 0 & 0 & \ddots & & 0 \ dots & & b_k & & dots \ & & & 0 & dots \ & & & 0 & dots \ & & & & \ddots & dots \ 0 & & & \cdots & & 0 \end{pmatrix}$$
 ,

where all the entries b_i satisfy $b_i \ge 1$ and divide each other, i.e. $b_i \mid b_{i+1}$. All b_i are unique up to multiplication by a unit.

Homology calculations in practice

- **1** Calculate boundary operator matrices.
- 2 Bring each matrix into Smith normal form (similar to Gaussian elimination).
- **3** Read off description of p^{th} homology group.

We have:

- rank Z_p is the number of zero columns of the boundary matrix of ∂_p .
- rank B_p is the number of non-zero rows of the boundary matrix of ∂_{p+1} .

Going from theory to practice

What we see

Going from theory to practice

What we get

From point clouds to simplicial complexes

Vietoris-Rips complex

Given a set of points $\mathcal{X} = \{x_1, \dots, x_n\}$ and a metric dist such as the Euclidean distance, pick a threshold ϵ and build the Vietoris–Rips complex \mathcal{V}_{ϵ} defined as:

$$\mathcal{V}_{\epsilon}(\mathcal{X}) := \{ \sigma \subseteq \mathcal{X} \mid \forall u, v \in \sigma : \operatorname{dist}(u, v) \leq \epsilon \}$$

Equivalently, V_{ϵ} contains all simplices whose *diameter* is less than or equal to ϵ .

Vietoris-Rips construction

Draw Euclidean balls (circles) of diameter ϵ and create a k-simplex σ for each subset of k + 1 points that intersect pairwise.

The Betti numbers of a Vietoris-Rips complex

Issues with this approach

- How to pick ϵ ?
- There might not be one 'correct' value for ϵ .
- Computationally inefficient; matrix reduction has to be performed for *every* simplicial complex.

Filtrations

The Betti number of the data *persists* over a range of the threshold parameter ϵ . To formalise this, assume that simplices in the Vietoris–Rips complex are added one after the other. This gives rise to a *filtration*, i.e.

$$\emptyset = \mathrm{K}_0 \subseteq \mathrm{K}_1 \subseteq \cdots \subseteq \mathrm{K}_{n-1} \subseteq \mathrm{K}_n = \mathcal{V}_{\epsilon},$$

where each K_i is a valid simplicial subcomplex of \mathcal{V}_{ϵ} .

Chain complexes and filtrations

Since $K_i \subseteq K_j$ for $i \leq j$, we obtain a sequence of homomorphisms connecting the homology groups of each simplicial complex, i.e.

 $f_p^{i,j}\colon H_p(\mathbf{K}_i)\to H_p(\mathbf{K}_j),$

which in turn gives rise to a sequence of homology groups, i.e.

$$0 = H_p(\mathbf{K}_0) \xrightarrow{f_p^{0,1}} H_p(\mathbf{K}_1) \xrightarrow{f_p^{1,2}} \dots \xrightarrow{f_p^{n-2,n-1}} H_p(\mathbf{K}_{n-1}) \xrightarrow{f_p^{n-1,n}} H_p(\mathbf{K}_n) = H_p(\mathcal{V}_{\epsilon}),$$

with p denoting the dimension of the corresponding homology group.

Persistent homology group

Given two indices $i \leq j$, the p^{th} persistent homology group $H_p^{i,j}$ is defined as

$$H_{p}^{i,j} := Z_{p}\left(\mathrm{K}_{i}
ight) / \left(B_{p}\left(\mathrm{K}_{j}
ight) \cap Z_{p}\left(\mathrm{K}_{i}
ight)
ight)$$
 ,

which contains all the homology classes of K_i that are still present in K_j .

Implication

We can calculate a new set of homology groups alongside the filtration and assign a 'duration' to each topological feature.

Persistent homology

Tracking of topological features

- Creation in K_i : $c \in H_p(K_i)$, but $c \notin H_p^{i-1,i}$
- Destruction in K_j : c is created in K_i , with $f_p^{i,j-1}(c) \notin H_p^{i-1,j-1}$ and $f_p^{i,j}(c) \in H_p^{i-1,j}$

The *persistence* of a class c that is created in K_i and destroyed in K_j is defined as

$$\operatorname{pers}(c) := |\operatorname{w}(j) - \operatorname{w}(i)|,$$

where $w: \mathbb{Z} \to \mathbb{R}$ assigns each simplicial complex of the filtration a weight, such as an associated distance, or an index. Persistence thus measures the 'scale' at which a certain topological feature occurs.

Standard filtrations

The distance filtration

Given a distance metric dist, such as the Euclidean metric, the *distance filtration* assigns weights based on pairwise distances between points:

$$\mathbf{w}(\sigma) := \begin{cases} 0 & \text{if } \sigma \text{ is a vertex} \\ \operatorname{dist}(u, v) & \text{if } \sigma = \{u, v\} \\ \max_{\tau \subseteq \sigma} \mathbf{w}(\tau) & \text{else} \end{cases}$$

Simplices need to be sorted in *ascending* order of their weights; in case of a tie, faces precede co-faces.

Persistent homology is capable of *preserving* distances under random projections¹.

¹D. R. Sheehy, 'The Persistent Homology of Distance Functions under Random Projection', *Proceedings of the* 30th *Annual Symposium on Computational Geometry*, 2014, pp. 328–334

Boundary matrix calculation alongside a filtration

а 🗕

Boundary matrix calculation alongside a filtration

a ● *b*

Boundary matrix calculation alongside a filtration

а

$$M = \begin{pmatrix} a & b & c & ab & bc & ac & abc \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{a}{bc}_{ac}_{ac}_{abc}$$

$$M = \begin{pmatrix} a & b & c & ab & bc & ac & abc \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{abc}{ac}_{abc}$$

Let M be a boundary matrix		$\left(0 \right)$	0	0	1	0	1	0\
for $i = 1$ do		0	0	0	1	1	0	0
while $\exists i' < i : low(i') = low(i) \neq 0$		0	0	0	0	1	1	0
do	M =	0	0	0	0	0	0	1
$M(i) = M(i) \oplus M(i')$		0	0	0	0	0	0	1
end while		0	0	0	0	0	0	1
end for		$\setminus 0$	0	0	0	0	0	0/

Let M be a boundary matrix		$\left(0 \right)$	0	0	1	0	1	0
for $i = 1$ do		0	0	0	1	1	0	0
while $\exists i' < i : low(i') = low(i) \neq 0$		0	0	0	0	1	1	0
do	M =	0	0	0	0	0	0	1
$M(i)=M(i)\oplus M(i')$		0	0	0	0	0	0	1
end while		0	0	0	0	0	0	1
end for		$\setminus 0$	0	0	0	0	0	0,

Let M be a boundary matrix		$\left(0 \right)$	0	0	1	0	1	0)
for $i = 1$ do		0	0	0	1	1	1	0
while $\exists i' < i : low(i') = low(i) \neq 0$		0	0	0	0	1	0	0
do	M =	0	0	0	0	0	0	1
$M(i) = M(i) \oplus M(i')$		0	0	0	0	0	0	1
end while		0	0	0	0	0	0	1
end for		$\setminus 0$	0	0	0	0	0	0/

Let M be a boundary matrix		$\left(0 \right)$	0	0	1	0	1	0
for $i = 1$ do		0	0	0	1	1	1	0
while $\exists i' < i : low(i') = low(i) \neq 0$		0	0	0	0	1	0	0
do	M =	0	0	0	0	0	0	1
$M(i) = M(i) \oplus M(i')$		0	0	0	0	0	0	1
end while		0	0	0	0	0	0	1
end for		$\setminus 0$	0	0	0	0	0	0,

Let M be a boundary matrix		$\left(0 \right)$	0	0	1	0	0	0
for $i = 1$ do		0	0	0	1	1	0	0
while $\exists i' < i : low(i') = low(i) \neq 0$		0	0	0	0	1	0	0
do	M =	0	0	0	0	0	0	1
$M(i) = M(i) \oplus M(i')$		0	0	0	0	0	0	1
end while		0	0	0	0	0	0	1
end for		$\setminus 0$	0	0	0	0	0	0/

Using the reduced boundary matrix

а	b	С	ab	bc	ас	abc	
0	0	0	1	0	0	0 \	а
0	0	0	1	1	0	0	b
0	0	0	0	1	0	0	С
0	0	0	0	0	0	1	ab
0	0	0	0	0	0	1	bc
0	0	0	0	0	0	1	ас
$\setminus 0$	0	0	0	0	0	0 /	abc

- If column *i* is empty, then σ_i is a positive simplex that creates a topological feature.
- If column *j* is non-empty with low(*j*) = *k*, then σ_j is a *negative* simplex that *destroys* the topological feature created by σ_k.
- For example, simplex *abc* destroys the cycle created by *ac*.

Illustrative example

Here, the topological feature is the circle that underlies that data. Since it persists from $\epsilon = 0.20$ to $\epsilon = 1.0$, its persistence is pers = 1.0 - 0.20 = 0.80.

Topological features and how to track them

Types of topological features

- Dimension 0: connected components
- Dimension 1: cycles
- Dimension 2: voids

Given a topological feature with associated simplicial complexes K_i and K_j , store the point (w(i), w(j)) in a *persistence diagram*.

If a feature is *never* destroyed, we assign it a weight of ∞ .

