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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.

Computing persistent homology in all dimensions

D. Cohen‐Steiner et al., ‘Stability of persistence dia‐
grams’

DOI: 10.1007/s00454-006-1276-5

Discrete Comput Geom 37:103–120 (2007) Discrete & Computational

Geometry
© 2006 Springer Science+Business Media, Inc.

Stability of Persistence Diagrams∗

David Cohen-Steiner,1 Herbert Edelsbrunner,2 and John Harer3

1INRIA, 2004 Route des Lucioles,
BP 93, 06904 Sophia-Antipolis, France
dcohen@sophia.inria.fr

2Department of Computer Science, Duke University,
Durham, NC 27708, USA
edels@cs.duke.edu
and
Geomagic,
Research Triangle Park, NC 27709, USA

3Department of Mathematics, Duke University,
Durham, NC 27708, USA
harer@math.duke.edu

Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 730–739, 2009.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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Fast construction of the Vietoris-Rips complex
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology

H. Lee et al., ‘Persistent brain network homology
from the perspective of dendrogram’

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 12, DECEMBER 2012 2267

Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
Raindrop Geomagic, Research Triangle Park, North Carolina.�

Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Topological Persistence and Simplification
�
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�
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�
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
Raindrop Geomagic, Research Triangle Park, North Carolina.�

Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.

Mapper algorithm

R. Ghrist, ‘Barcodes: The persistent topology of
data’

BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 730–739, 2009.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.

Computing persistent homology in all dimensions

D. Cohen‐Steiner et al., ‘Stability of persistence dia‐
grams’

DOI: 10.1007/s00454-006-1276-5

Discrete Comput Geom 37:103–120 (2007) Discrete & Computational

Geometry
© 2006 Springer Science+Business Media, Inc.

Stability of Persistence Diagrams∗

David Cohen-Steiner,1 Herbert Edelsbrunner,2 and John Harer3

1INRIA, 2004 Route des Lucioles,
BP 93, 06904 Sophia-Antipolis, France
dcohen@sophia.inria.fr

2Department of Computer Science, Duke University,
Durham, NC 27708, USA
edels@cs.duke.edu
and
Geomagic,
Research Triangle Park, NC 27709, USA

3Department of Mathematics, Duke University,
Durham, NC 27708, USA
harer@math.duke.edu

Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 730–739, 2009.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.
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Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Topological Persistence and Simplification
�

Herbert Edelsbrunner
�
, David Letscher

�
, and Afra Zomorodian
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
Raindrop Geomagic, Research Triangle Park, North Carolina.�

Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.

Hausdorff stability of persistence diagrams

G. Singh et al., ‘Topological methods for the analysis
of high dimensional data sets and 3D object recog‐
nition’

Eurographics Symposium on Point-Based Graphics (2007)

M. Botsch, R. Pajarola (Editors)
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two

Author contributions: M.N., A.J.L., and G.C. designed research; M.N. performed research;
M.N., A.J.L., and G.C. analyzed data; and M.N., A.J.L., and G.C. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: alevine@ias.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1102826108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1102826108 PNAS | April 26, 2011 | vol. 108 | no. 17 | 7265–7270

SY
ST

EM
S
BI
O
LO

G
Y

Mapper for breast cancer analysis

F. Chazal et al., ‘Persistence‐based clustering in
Riemannian manifolds’

Persistence-Based Clustering in Riemannian Manifolds

Frédéric Chazal, Steve Oudot, Primoz Skraba
INRIA Saclay – Île-de-France

4, rue Jacques Monod
91893 Orsay Cedex, France

firstname.lastname@inria.fr

Leonidas J. Guibas
Computer Science Dept.

Stanford University
Stanford, CA 94305, USA

guibas@cs.stanford.edu

ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
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Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.

1

Barcodes

G. Carlsson and A. J. Zomorodian, ‘The theory of
multidimensional persistence’

Discrete Comput Geom (2009) 42: 71–93
DOI 10.1007/s00454-009-9176-0

The Theory of Multidimensional Persistence

Gunnar Carlsson · Afra Zomorodian

Received: 1 October 2007 / Revised: 2 March 2009 / Accepted: 2 March 2009 /
Published online: 24 April 2009
© Springer Science+Business Media, LLC 2009

Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification

Communicated By Peter Olver.

This research is partially supported by the Defense Advanced Research Projects Agency (DARPA)
under grants HR0011-05-1-0007 and HR0011-05-1-0057 and by CNRS under grant PICS-3416.

D. Cohen-Steiner
INRIA, 2004 Route des Lucioles, BP93, Sophia-Antipolis, France

H. Edelsbrunner (�)
Departments of Computer Science and of Mathematics, Duke University, Durham, NC, USA
e-mail: edels@cs.duke.edu

H. Edelsbrunner
Geomagic, Research Triangle Park, NC, USA

J. Harer
Department of Mathematics and Section in Computational Biology and Bioinformatics, Duke
University, Durham, NC, USA

Y. Mileyko
Department of Computer Science, Duke University, Durham, NC, USA

Lipschitz stability of persistence diagrams

H. Edelsbrunner and J. Harer, Computational topo‐
logy: An introduction

The book

A. J. Zomorodian, ‘Fast construction of the Vietoris–
Rips complex’

Technical Section

Fast construction of the Vietoris-Rips complex

Afra Zomorodian

Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

a r t i c l e i n f o

Keywords:

Topological data analysis

Vietoris-Rips complex

Clique complex

a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].

Manuscript received August 17, 2012; revised September 07, 2012; accepted
September 08, 2012. Date of publication September 19, 2012; date of current
version November 27, 2012. This work was supported in part by NRF grant
funded by the Korea government (MEST) (No. 2011-0030815), and in part by
NAP grant funded by the Korean Research Council of Fundamental Science
and Technology, and by Brain Research Center of the 21st Century Frontier
Research Program (2012K001119). This research was also supported by the
WCUDepartment of Brain and Cognitive Science and by Grant R31-2008-000-
10103-0 from the WCU program of the MEST and the NRF. Asterisk indicates
corresponding author.
H. Lee is with the Department of Nuclear Medicine and Department of Brain

and Cognitive Sciences, Seoul National University, Seoul 110-744, Korea
(e-mail: leehk@postech.ac.kr).
H. Kang is with the Department of Nuclear Medicine, Seoul National Uni-

versity, Seoul110-744 , Korea (e-mail: hkang211@snu.ac.kr).
*M. K. Chung is with the Department of Biostatistics and Medical Infor-

matics, and the Waisman Laboratory for Brain Imaging and Behavior, Univer-
sity of Wisconsin, Madison, WI 53705 USA (e-mail: mkchung@wisc.edu).
B.-N. Kim is with the Devision of Child and Adolescent Psychiatry, De-

partment of Neuropsychiatry, Seoul National University, Seoul 151-742, Korea
(e-mail: kbn1@snu.ac.kr).
D. S. Lee is with the Department of Nuclear Medicine and WCU Department

of Molecular Medicine and Biopharmaceutical Sciences, Seoul National Uni-
versity, Seoul 110-744, Korea (e-mail: dsl@snu.ac.kr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMI.2012.2219590

The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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under grant DAAG55-98-1-0177. Research by the first author is also par-
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Department of Mathematics, Oklahoma State University, Stillwater,
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Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two

Author contributions: M.N., A.J.L., and G.C. designed research; M.N. performed research;
M.N., A.J.L., and G.C. analyzed data; and M.N., A.J.L., and G.C. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: alevine@ias.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1102826108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1102826108 PNAS | April 26, 2011 | vol. 108 | no. 17 | 7265–7270

SY
ST

EM
S
BI
O
LO

G
Y

Mapper for breast cancer analysis

F. Chazal et al., ‘Persistence‐based clustering in
Riemannian manifolds’

Persistence-Based Clustering in Riemannian Manifolds

Frédéric Chazal, Steve Oudot, Primoz Skraba
INRIA Saclay – Île-de-France

4, rue Jacques Monod
91893 Orsay Cedex, France

firstname.lastname@inria.fr

Leonidas J. Guibas
Computer Science Dept.

Stanford University
Stanford, CA 94305, USA

guibas@cs.stanford.edu

ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for
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high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Topological Persistence and Simplification
�
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.

Computing persistent homology in all dimensions

D. Cohen‐Steiner et al., ‘Stability of persistence dia‐
grams’

DOI: 10.1007/s00454-006-1276-5

Discrete Comput Geom 37:103–120 (2007) Discrete & Computational

Geometry
© 2006 Springer Science+Business Media, Inc.

Stability of Persistence Diagrams∗

David Cohen-Steiner,1 Herbert Edelsbrunner,2 and John Harer3

1INRIA, 2004 Route des Lucioles,
BP 93, 06904 Sophia-Antipolis, France
dcohen@sophia.inria.fr

2Department of Computer Science, Duke University,
Durham, NC 27708, USA
edels@cs.duke.edu
and
Geomagic,
Research Triangle Park, NC 27709, USA

3Department of Mathematics, Duke University,
Durham, NC 27708, USA
harer@math.duke.edu

Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.
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The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
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of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.

Hausdorff stability of persistence diagrams

G. Singh et al., ‘Topological methods for the analysis
of high dimensional data sets and 3D object recog‐
nition’

Eurographics Symposium on Point-Based Graphics (2007)

M. Botsch, R. Pajarola (Editors)

Topological Methods for the Analysis of High Dimensional

Data Sets and 3D Object Recognition

Gurjeet Singh1 , Facundo Mémoli2 and Gunnar Carlsson†2

1Institute for Computational and Mathematical Engineering, Stanford University, California, USA.
2Department of Mathematics, Stanford University, California, USA.

Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 730–739, 2009.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Topological Persistence and Simplification
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
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Department of Mathematics, Oklahoma State University, Stillwater,
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Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Topological Persistence and Simplification
�

Herbert Edelsbrunner
�
, David Letscher

�
, and Afra Zomorodian
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
Raindrop Geomagic, Research Triangle Park, North Carolina.�

Department of Mathematics, Oklahoma State University, Stillwater,
Oklahoma.�

Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.
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BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.

Communicated by Konstantin Mischaikow.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

Clustering meets persistent homology
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network

0278-0062/$31.00 © 2012 IEEE
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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Abstract

We formalize a notion of topological simplification
within the framework of a filtration, which is the history of
a growing complex. We classify a topological change that
happens during growth as either a feature or noise depend-
ing on its life-time or persistence within the filtration. We
give fast algorithms for computing persistence and experi-
mental evidence for their speed and utility.

Keywords. Computational geometry, computational topology, ho-
mology groups, filtrations, alpha shapes.

1 Introduction

The need for automated topological simplification has
been articulated in the computer graphics and geometric
modeling literature. This paper proposes a solution in which
scale is used to assess the persistence of topological at-
tributes and to prioritize simplification steps. After describ-
ing a new notion of topological simplification, we summa-
rize the contributions of this paper and contrast them with
prior work.

Topological simplification. We use homology to measure
the topological complexity of a point set in ��� . The sim-
plest non-empty sets under this measure are the ones that
contract to a point. Each such set consists of one compo-
nent and has no other non-trivial homological attributes. A
general set in � � has �	� components, ��
 tunnels, and �
�
voids. We consider topological complexity to be expressed
by � ��� � 
�� � � , the Betti numbers of the set. As such, we
understand topological simplification as a process that de-
creases Betti numbers. To do this in a geometrically mean-
ingful manner, we need a way of assessing the importance
�
Research by the first and third authors is partially supported by ARO

under grant DAAG55-98-1-0177. Research by the first author is also par-
tially supported by NSF under grant CCR-97-12088.�

Department of Computer Science, Duke University, Durham, and
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Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

of topological attributes. Once we have such a numerical
assessment, we naively remove attributes in the order of in-
creasing importance. At any moment during this process,
we may call the removed attributes topological noise and
the remaining ones topological features.

There are three technical difficulties with this approach.
The first is the identification of subsets expressing the non-
trivial topological attributes that are measured by homology
groups. The second is the measurement of the importance
of these subsets. The third is the elimination of a topolog-
ical attribute with a minimum number of side-effects. We
overcome these difficulties in this paper and describe a sim-
plification process as envisioned above.

Approach and Results. We restrict our attention to sets
represented by finite simplicial complexes in ��� . For practi-
cal reasons, moreover, we focus on particular subcomplexes
of Delaunay triangulations called alpha complexes [3]. We
receive essential help in overcoming some technical diffi-
culties by assuming a filtration which places the complex
within an evolutionary growth process. Given a filtration,
the main contributions of this paper are:

(i) the definition of persistence for Betti numbers and non-
bounding cycles,

(ii) an efficient algorithm to compute persistence,

(iii) a simplification algorithm based on persistence.

Prior work. As mentioned earlier, we use homology
groups and Betti numbers which were developed and re-
fined during the first half of the twentieth century. We re-
fer to Munkres [8] for a description that is reasonably ac-
cessible to non-specialists. Spectral sequences are the by-
product of a divide-and-conquer method for computing ho-
mology groups and Betti numbers [6]. These sequences
form a framework within which our result on persistent
Betti numbers may be placed. The algorithm we develop
for computing persistence of non-bounding cycles is based
on the incremental Betti number algorithm of Delfinado
and Edelsbrunner [2]. Three-dimensional alpha shapes and
complexes may be found in Edelsbrunner and Mücke [3].
The problem of topological simplification was also ap-
proached by El-Sana and Varshney [4] using alpha shape
inspired ideas of geometric growth.
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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S3 and
Z2 coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K , allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simplicial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{Gi }i≥0 together with homomorphisms Gi → Gi+1. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in

∗ Research by the first author was partially supported by NSF under Grants CCR-00-86013 and ITR-
0086013. Research by the second author was partially supported by NSF under Grant DMS-0101364. Research
by both authors was partially supported by NSF under Grant DMS-0138456.
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Abstract. The persistence diagram of a real-valued function on a topological space is
a multiset of points in the extended plane. We prove that under mild assumptions on the
function, the persistence diagram is stable: small changes in the function imply only small
changes in the diagram. We apply this result to estimating the homology of sets in a metric
space and to comparing and classifying geometric shapes.

1. Introduction

In this paper we consider real-valued functions on topological spaces and use the concept
of persistence to study their qualitative and quantitative behavior. More specifically, we
encode the topological characteristics of a function in what we call its persistence diagram
and study the stability of this encoding.

Motivation. Topological spaces and functions on them are common types of data in all
disciplines of the natural sciences and engineering and their computational treatment is

∗ The NSF partially supported the first two authors under Grant CCR-00-86013 and the third author under
Grant DMS-01-07621. The DARPA partially supported all three authors under Grant HR0011-05-1-0007.
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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a

c© The Eurographics Association 2007.

Mapper algorithm

R. Ghrist, ‘Barcodes: The persistent topology of
data’

BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

Abstract. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. The shape of data

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial

complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) It is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology

adapted to parameterized families.
(3) It is beneficial to encode the persistent homology of a data set in the form

of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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Abstract Persistent homology captures the topology of a filtration—a one-parameter
family of increasing spaces—in terms of a complete discrete invariant. This invariant
is a multiset of intervals that denote the lifetimes of the topological entities within
the filtration. In many applications of topology, we need to study a multifiltration:
a family of spaces parameterized along multiple geometric dimensions. In this pa-
per, we show that no similar complete discrete invariant exists for multidimensional
persistence. Instead, we propose the rank invariant, a discrete invariant for the robust
estimation of Betti numbers in a multifiltration, and prove its completeness in one
dimension.

Keywords Computational topology · Multidimensional analysis · Persistent
homology · Persistence

1 Introduction

In this paper, we introduce the theory of multidimensional persistence, an extension
of the concept of persistent homology [9, 21]. Persistence captures the topology of
a filtration, a one-parameter increasing family of spaces. Filtrations arise naturally
from many processes, such as multiscale analysis of noisy datasets. Given a filtration,
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Abstract Persistent homology has proven to be a useful tool in a variety of contexts,
including the recognition and measurement of shape characteristics of surfaces in R

3.
Persistence pairs homology classes that are born and die in a filtration of a topological
space, but does not pair its actual homology classes. For the sublevelset filtration of
a surface in R

3, persistence has been extended to a pairing of essential classes using
Reeb graphs. In this paper, we give an algebraic formulation that extends persistence
to essential homology for any filtered space, present an algorithm to calculate it,
and describe how it aids our ability to recognize shape features for codimension 1
submanifolds of Euclidean space. The extension derives from Poincaré duality but
generalizes to nonmanifold spaces. We prove stability for general triangulated spaces
and duality as well as symmetry for triangulated manifolds.
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Abstract. The theory of multidimensional persistence captures the
topology of a multifiltration – a multiparameter family of increasing
spaces. Multifiltrations arise naturally in the topological analysis of sci-
entific data. In this paper, we give a polynomial time algorithm for com-
puting multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ε-balls around each point. As we increase ε,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
� The authors were partially supported by the following grants: G. C. by NSF DMS-

0354543; A. Z. by DARPA HR 0011-06-1-0038, ONR N 00014-08-1-0908, and NSF
CCF-0845716; all by DARPA HR 0011-05-1-0007.
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Abstract We prove two stability results for Lipschitz functions on triangulable, com-
pact metric spaces and consider applications of both to problems in systems biology.
Given two functions, the first result is formulated in terms of the Wasserstein distance
between their persistence diagrams and the second in terms of their total persistence.

Keywords Continuous functions · Metric spaces · Persistent homology ·
Wasserstein distance · Total persistence · Stability · Gene expression · Comparison ·
Classification
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a b s t r a c t

The Vietoris-Rips complex characterizes the topology of a point set. This complex is popular in

topological data analysis as its construction extends easily to higher dimensions. We formulate a two-

phase approach for its construction that separates geometry from topology. We survey methods for the

first phase, give three algorithms for the second phase, implement all algorithms, and present

experimental results. Our software can be used also for constructing any clique complex, such as the

weak witness complex.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present fast algorithms for constructing the
filtered Vietoris-Rips complex of a point set. Our software can
compute arbitrary dimensional complexes for point sets in
arbitrary dimensions, and may be applied toward constructing
other clique complexes, such as the weak witness complex. Fig. 1
shows the performance of our fastest algorithm to inspire
interest. On this point set, we compute a complex consisting of
24M simplices in about 80 seconds at scale e¼ 0:15. All our
timings are done on a 64-bit GNU/Linux machine with two dual-
core 3 GHz Xeon processors, although our software is not
threaded and uses only one core.

1.1. Motivation

Scientific data, whether acquired or simulated, may be
modeled as point cloud data, finite sets of points embedded in
metric spaces. Analysis assumes that data has structure: It is
sampled from some underlying geometric space. Within compu-
tational topology, the emerging area of topological data analysis

focuses on the recovery of the lost topology of this underlying
space. In topological analysis, we generally follow a two step
process. In the first step, we approximate the underlying structure
of the point set using a combinatorial structure, such as a
simplicial or cubical complex. In the second step, we utilize
techniques from algebraic topology to compute topological
invariants of these structures. One popular invariant is persistent
homology [14,39] which analyzes the relationship between
structures at different scales.

There are a number of methods for completing the first step of
topological analysis. We may partition these methods roughly

into geometric and algebraic techniques. Geometric methods
include the alpha complex [15], its conformal variant [6], and the
flow complex [18], to name a few. When the data is embedded
in R2 or R3, geometric methods are ideal as they are fast and
produce small embedded complexes. Unfortunately, these
methods depend on the Delaunay complex [10]. Currently, we do
not have robust software for computing the Delaunay complex
in dimensions higher than three, although progress is being
made [3].

The classic algebraic method is the Čech complex [20]
whose construction is infeasible in practice. For this reason, this
complex is often approximated by the Vietoris-Rips complex
or VR complex for short, the focus of this paper [35]. The VR
complex is currently the only practical complex for analyzing
datasets in higher dimensions. We have used it, for instance, to
compute shape descriptors based on curvature [8] and to
characterize the local structure of natural images [5]. Another
popular method is the family of witness complexes [12] which
approximate topology. As we will see, the variant of this complex
often used in practice, the weak witness complex, is related
to the VR complex, so our work is immediately applicable to its
construction.

1.2. Prior work

Due to its simplicity, the VR complex has been computed often
using ad hoc algorithms in the past, including in our prior work
[5]. These implementations were sufficient because the datasets
were small or sampled to be small, generally a few hundred points
in size. Also, only low-dimensional complexes were built.
Currently, public implementations are available in PLEX [30], a
MATLAB library, and its java descendant JPlex [32]. We compare
our implementation to JPlex which may be viewed as the state
of the art. We did not have access to the source code of JPlex, but
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High-throughput biological data, whether generated as sequenc-
ing, transcriptional microarrays, proteomic, or other means,
continues to require analytic methods that address its high
dimensional aspects. Because the computational part of data
analysis ultimately identifies shape characteristics in the organi-
zation of data sets, the mathematics of shape recognition in high
dimensions continues to be a crucial part of data analysis. This
article introduces a method that extracts information from high-
throughput microarray data and, by using topology, provides
greater depth of information than current analytic techniques. The
method, termed Progression Analysis of Disease (PAD), first iden-
tifies robust aspects of cluster analysis, then goes deeper to find
a multitude of biologically meaningful shape characteristics in
these data. Additionally, because PAD incorporates a visualization
tool, it provides a simple picture or graph that can be used to
further explore these data. Although PAD can be applied to a wide
range of high-throughput data types, it is used here as an example
to analyze breast cancer transcriptional data. This identified a
unique subgroup of Estrogen Receptor-positive (ER+) breast can-
cers that express high levels of c-MYB and low levels of innate
inflammatory genes. These patients exhibit 100% survival and no
metastasis. No supervised step beyond distinction between tumor
and healthy patients was used to identify this subtype. The group
has a clear and distinct, statistically significant molecular signa-
ture, it highlights coherent biology but is invisible to cluster meth-
ods, and does not fit into the accepted classification of Luminal
A/B, Normal-like subtypes of ER+ breast cancers. We denote the
group as c-MYB+ breast cancer.

applied topology | p53 | systems biology

Increasingly it has become clear that, for most cancers, un-
derstanding the disease demands exploring biological processes

as complex functioning systems and the pathology observed as
a disruption in the coordinated performance of such systems. This
viewpoint necessitates incorporating high-throughput data in the
study of these diseases and consequently demands the continued
development of mathematical analytic methods geared specifi-
cally to such data. The fundamental mathematical challenges
in extracting meaningful information from high-throughput bi-
ological data stem, ultimately, from the difficulty in understanding
the intrinsic shape of data in high dimensions (1). Shape char-
acteristics such as kurtosis, modality, or the presence of outliers
have always played a crucial role in the analysis of data, but the
high dimensionality of genomic data poses mathematical diffi-
culties in identifying its geometry. Additionally, biological phe-
nomena are intrinsically highly variable and stochastic in nature,
and notions of biological similarity are less rigid. Consequently,
analysis methods for biomedical data need to identify shape
characteristics that are fairly robust to changes by rescaling of
distances and therefore become more qualitative in nature. This
has led us to use methods adapted from the mathematics area of
topology, which studies precisely the characteristics of shapes that
are not rigid. The particular method we introduce in the present

article is intermediate between clustering and more distance-
sensitive methods like Principal Component Analysis (PCA) and
multidimensional scaling. This hybrid approach is able to extract
unique biology from data sets. As an example, we applied our
method of analysis to breast cancer transcriptional genomic data
and identified a molecularly distinct unique breast cancer sub-
group of Estrogen Receptor-positive (ER+) tumors that have 100%
overall survival and whose molecular signature is distinct from
normal tissue and other breast cancers.
This article introduces Progression Analysis of Disease (PAD),

an approach to data analysis of disease that unravels the ge-
ometry of data sets and provides an easily accessible picture of
the outcome. This method is an application of Mapper (2), a
mathematical tool that builds a simple geometric representation
of data along preassigned guiding functions called filters. Mapper
provides both a method for mathematical data analysis and a
visualization tool; the filter functions introduced through Mapper
define a framework for supervised analysis. The output of the
analysis approximates a collapse of the data into a simple, low
dimensional shape, and the filter functions act as guides along
which the collapse is done. Mapper has already been used suc-
cessfully to uncover unique subtle aspects of the folding patterns
of RNA (3). Here we define an application of Mapper to the
analysis of transcriptionally genomic data from disease, with
guiding filter functions provided by Disease-Specific Genomic
Analysis (DSGA) (4). DSGA is a method of mathematical analysis
of genomic data that highlights the component of data relevant to
disease, by defining a transformation that measures the extent to
which diseased tissue deviates from healthy tissue. DSGA has
been shown to both (i) outperform traditional methods of anal-
ysis, and (ii) highlight unique biology. In combination with
Mapper, DSGA transformations provide a means to define the
guiding filter function, essentially by unraveling the data accord-
ing to the extent of overall deviation from a healthy state.
We make PAD available as a Web tool, with options for DSGA

only, Mapper only, or a combination of the two (5).
Our method, PAD, is able to identify geometric characteristics

of these data that are obscured when using cluster analysis. Long
gradual drifts in the graphs of these data are visible, as for ex-
ample are expected when the results consist of patients with
progressively advanced stages of disease. More importantly, by
preserving the geometry of these data, PAD has identified
a unique subset of breast cancers that exhibit clear and coherent
clinical characteristics. Specifically, we applied PAD to breast
cancer transcriptional microarray data (6) and identified two
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ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.
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1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.
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Persistent Brain Network Homology From the
Perspective of Dendrogram

Hyekyoung Lee, Hyejin Kang, Moo K. Chung*, Bung-Nyun Kim, and Dong Soo Lee

Abstract—The brain network is usually constructed by esti-
mating the connectivity matrix and thresholding it at an arbitrary
level. The problem with this standard method is that we do not
have any generally accepted criteria for determining a proper
threshold. Thus, we propose a novel multiscale framework that
models all brain networks generated over every possible threshold.
Our approach is based on persistent homology and its various
representations such as the Rips filtration, barcodes, and dendro-
grams. This new persistent homological framework enables us to
quantify various persistent topological features at different scales
in a coherent manner. The barcode is used to quantify and visu-
alize the evolutionary changes of topological features such as the
Betti numbers over different scales. By incorporating additional
geometric information to the barcode, we obtain a single linkage
dendrogram that shows the overall evolution of the network.
The difference between the two networks is then measured by
the Gromov–Hausdorff distance over the dendrograms. As an
illustration, we modeled and differentiated the FDG-PET based
functional brain networks of 24 attention-deficit hyperactivity
disorder children, 26 autism spectrum disorder children, and 11
pediatric control subjects.

Index Terms—Barcode, functional brain network,
Gromov–Hausdorff distance, persistent homology, rips complex,
rips filtration, single linkage dendrogram.

I. INTRODUCTION

M ANY functional brain connectivity studies have often
focused on verifying the topological characteristics of

the network such as the small-worldness, scale-freeness, or
modularity using well-known graph measures [1]–[10].
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The connectivity of the human brain, also known as human
connectome, is usually represented as a graph consisting of
nodes and edges connecting the nodes [11]. The nodes are
mainly predefined anatomical regions of interest (ROIs). The
edges are determined by various technique such as correlation
methods, structural equation modeling or dynamic causal
modeling [2], [12]–[17].
In the correlation approaches, depending on whether we

threshold the correlation at a certain level or not, we obtain ei-
ther weighted or binary networks [17], [18]. Since the weighted
brain network is difficult to interpret and visualize compared
to the binary network, the binary brain network has more
been often used [19], [20]. However, depending on where
to threshold the correlation, the binary network changes. To
obtain the proper threshold, the multiple comparison correction
over every possible edge can be also applicable [3], [20]–[24].
However, depending on what -value to threshold, the resulting
graph also changes.
Others tried to control the sparsity of edges in the network.

The sparsity of a graph is defined as the ratio of the number of
edges to the number of all possible edges [6], [20], [25]–[27].
Fixing the sparsity needs an educated guess; therefore, two dif-
ferent networks are compared in the preselected range of spar-
sity [19], [25], [28]. Since this approach is also problematic, in
the end, the two different networks are compared at the max-
imum sparsity.
Until now, there are not widely accepted criteria for thresh-

olding networks. Instead of trying to come up with a proper
threshold for network construction that may not work for dif-
ferent clinical populations or cognitive conditions [20], why
not use all networks for every possible threshold? Motivated
by this question, we developed a novel multiscale hierarchical
network modeling framework that traces the evolution of net-
work changes over different thresholds. Since we are using net-
works constructed at every threshold, we practically bypass the
problem of determining the optimal threshold. However, one
main technical huddle of using every possible network at dif-
ferent scales is the inherent computational burden of handling
significantly many networks. The persistent homology, a new
branch of the algebraic topology, provides a clue for efficiently
handling and analyzing multiscale networks by identifying the
persistent topological features over changing scales [29]–[31].
The concept of persistent homology has been previously ap-

plied to medical image analysis [32]–[35]. In particular, Singh,
et al. applied the persistent homology to the electrocorticog-
raphy-based connectivity in primary visual cortex of macaque
previously [34]. They tried to find the proper threshold for con-
nectivity matrix using persistent homology. On the other hand,
in this paper, we will show that it is also possible to do network
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Abstract

We present a novel method for learning densities with bounded support which
enables us to incorporate ‘hard’ topological constraints. In particular, we show
how emerging techniques from computational algebraic topology and the notion
of persistent homology can be combined with kernel-based methods from machine
learning for the purpose of density estimation. The proposed formalism facilitates
learning of models with bounded support in a principled way, and – by incorpo-
rating persistent homology techniques in our approach – we are able to encode
algebraic-topological constraints which are not addressed in current state of the
art probabilistic models. We study the behaviour of our method on two synthetic
examples for various sample sizes and exemplify the benefits of the proposed ap-
proach on a real-world dataset by learning a motion model for a race car. We show
how to learn a model which respects the underlying topological structure of the
racetrack, constraining the trajectories of the car.

1 Introduction

Probabilistic methods based on Gaussian densities have celebrated successes throughout machine
learning. They are the crucial ingredient in Gaussian mixture models (GMM) [1], Gaussian pro-
cesses [2] and Gaussian mixture regression (GMR) [3] which have found applications in fields such
as robotics, speech recognition and computer vision [1, 4, 5] to name just a few. While Gaussian
distributions are convenient to work with for several theoretical and practical reasons (the central
limit theorem, easy computation of means and marginals, etc.) they do fall into the class of densities
on Rd for which supp f = Rd; i.e. they assign a non-zero probability to every subset with non-zero
volume in Rd. This property of Gaussians can be problematic if an application dictates that certain
subsets of space should constitute a ‘forbidden’ region having zero probability mass. A simple ex-
ample would be a probabilistic model of admissible positions of a robot in an indoor environment,
where one wants to assign zero – rather than just ‘low’ – probability to positions corresponding to
collisions with the environment. Encoding such constraints using e.g. a Gaussian mixture model is
not natural since it assigns potentially low, but non-zero probability mass to every portion of space.

In contrast to the above Gaussian models, we consider non-parametric density estimators based on
spherical kernels with bounded support. As we shall explain, this enables us to study topological
properties of the support region Ωε for such estimators. Kernel-based density estimators are well-
established in the statistical literature [6] with the basic idea being that one should put a rescaled
version of a given model density over each observed data-point to obtain an estimate for the prob-
ability density from which the data was sampled. The choice of rescaling – or ‘bandwidth’ – ε
has been studied with respect to the standard L1 and L2 error and is still an active area of research
[7]. We focus particularly on spherical truncated Gaussian kernels here which have been some-
∗This work was supported by the EU projects FLEXBOT (FP7-ERC-279933) and TOMSY (IST-FP7-

270436) and the Swedish Foundation for Strategic Research
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.
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Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams

C. Hofer et al., ‘Connectivity‐optimized representa‐
tion learning via persistent homology’

Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’
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Christoph Hofer
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Roland.Kwitt@sbg.ac.at

Marc Niethammer
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations

K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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measure for deep neural networks using algebraic
topology’
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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Inria Saclay Île-de-France, Bâtiment Alan Turing, 1 rue Honoré d’Estienne d’Orves,
91120 Palaiseau, France
e-mail: don.r.sheehy@gmail.com

123

Sparse filtrations

A. Adcock et al., ‘Classification of hepatic lesions
using the matching metric’

Classification of hepatic lesions using the matching metric

Aaron Adcock a,⇑, Daniel Rubin b, Gunnar Carlsson c

aDept. of Electrical Engineering, 350 Serra Mall, Stanford, CA 94305, United States
bDept. of Radiology, Richard M. Lucas Center, P285, Stanford, CA 94305, United States
cDept. of Mathematics, Bldg 380, Stanford, CA 94305, United States

a r t i c l e i n f o

Article history:
Received 1 October 2012
Accepted 17 October 2013

Keywords:
Medical image processing
Image classification
Persistent homology
Computational topology

a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks
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Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks

Bastian Rieck, Member, IEEE, Ulderico Fugacci, Member, IEEE,
Jonas Lukasczyk, Student Member, IEEE, and Heike Leitte, Member, IEEE

(a) (b)

0 10 20 30
0

10

20

30

Creation

D
es

tr
uc

ti
on

(c)
0

0

12

12

14

14

18

18

19

19

21

21

22

22

24

24

25

25

26

26

27

27

28

28

29

29

30

30

32

32

(d)

Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.
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D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do

Preprint. Under review.
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Topological Autoencoders
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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measure for deep neural networks using algebraic
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
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2SIB SWISS INSTITUTE OF BIOINFORMATICS, SWITZERLAND
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Classifying lesions using barcodes
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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Extracting insights from the shape of
complex data using topology
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& G. Carlsson1,4
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Dimensionality Reduction Schemes

B. Rieck and H. Leitte

Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 
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a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for

Michael Kerber and Arnur Nigmetov acknowledge support by the Max Planck Center for Visual Computing
and Communication. Dmitriy Morozov is supported by Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231.
Authors’ addresses: M. Kerber and A. Nigmetov, Institute of Geometry, Graz University of Technology,
8010 Graz, Austria; emails: {kerber, nigmetov}@tugraz.at; D. Morozov, Lawrence Berkeley National Lab, 1
Cyclotron Road, Mailstop 59R-3103, Berkeley, CA 94720; email: dmorozov@lbl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-6654/2017/09-ART1.4 $15.00
DOI: http://dx.doi.org/10.1145/3064175

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Approximate metrics for persistence diagrams

T. Qaiser et al., ‘Persistent homology for fast tumor
segmentation in whole slide histology images’

Persistence‐based features for histology classification

B. Rieck and H. Leitte, ‘Exploring and comparing
clusterings of multivariate data sets using persistent
homology’

Eurographics Conference on Visualization (EuroVis) 2016
K-L. Ma, G. Santucci, and J. J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Exploring and Comparing Clusterings of Multivariate Data Sets
Using Persistent Homology

B. Rieck1,2 and H. Leitte1

1TU Kaiserslautern, Germany
2Heidelberg University, Germany

Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
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Proceedings of the 34 th International Conference on Machine
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Kernel for Persistence Diagrams

Tam Le
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities

M. Carrière et al., ‘PersLay: A Simple and Versatile
Neural Network Layer for Persistence Diagrams’

PersLay: A Simple and Versatile Neural Network
Layer for Persistence Diagrams

Mathieu Carrière
Rabadan Lab

Columbia University
New York, US.

mc4660@columbia.edu

Frédéric Chazal
Datashape, Inria Saclay

Palaiseau, France.
frederic.chazal@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
ike.yuichi@fujitsu.com

Théo Lacombe
Datashape, Inria Saclay

Palaiseau, France.
theo.lacombe@inria.fr

Martin Royer
Datashape, Inria Saclay

Palaiseau, France.
martin.royer@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
umeda.yuhei@fujitsu.com

Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams
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Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that

SUBJECT AREAS:
APPLIED MATHEMATICS

COMPUTATIONAL SCIENCE

SCIENTIFIC DATA

SOFTWARE

Received
13 September 2012

Accepted
6 December 2012

Published
7 February 2013

Correspondence and
requests for materials

should be addressed to
G.C. (gunnar@math.

stanford.edu) or P.Y.L.
(pek@ayasdi.com)

SCIENTIFIC REPORTS | 3 : 1236 | DOI: 10.1038/srep01236 1

Mapper applications

D. R. Sheehy, ‘Linear‐size approximations to the
Vietoris–Rips filtration’

Discrete Comput Geom (2013) 49:778–796
DOI 10.1007/s00454-013-9513-1

Linear-Size Approximations to the Vietoris–Rips
Filtration

Donald R. Sheehy

Received: 13 July 2012 / Revised: 15 February 2013 / Accepted: 18 April 2013 /
Published online: 25 May 2013
© Springer Science+Business Media New York 2013

Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.10.014

⇑ Corresponding author. Fax: +1 650 725 4066.
E-mail addresses: aadcock@stanford.edu (A. Adcock), dlrubin@stanford.edu

(D. Rubin), gunnar@math.stanford.edu (G. Carlsson).

Computer Vision and Image Understanding 121 (2014) 36–42

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

Classifying lesions using barcodes

P. Bubenik, ‘Statistical topological data analysis using
persistence landscapes’

Journal of Machine Learning Research 16 (2015) 77-102 Submitted 7/14; Published 1/15

Statistical Topological Data Analysis using Persistence
Landscapes

Peter Bubenik peter.bubenik@gmail.com

Department of Mathematics

Cleveland State University

Cleveland, OH 44115-2214, USA

Editor: David Dunson

Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation
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Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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New kernel based on Fisher information metric

B. Rieck et al., ‘Clique Community Persistence: A
topological visual analysis approach for complex net‐
works’

822  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received 31 Mar. 2017; accepted 1 Aug. 2017.
Date of publication 28 Aug. 2017; date of current version 1 Oct. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2744321

Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.

ar
X

iv
:1

90
4.

09
37

8v
2 

 [
st

at
.M

L
] 

 5
 J

un
 2

01
9

Deep sets for persistence diagrams

C. Hofer et al., ‘Connectivity‐optimized representa‐
tion learning via persistent homology’

Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 and Steve Y. Oudot1 and Maks Ovsjanikov2

1INRIA Saclay 2LIX, École Polytechnique

Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
Inria Saclay Île-de-France, Bâtiment Alan Turing, 1 rue Honoré d’Estienne d’Orves,
91120 Palaiseau, France
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Link prediction

S. Chowdhury and F. Mémoli, ‘A functorial Dowker
theorem and persistent homology of asymmetric
networks’
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A functorial Dowker theorem and persistent homology
of asymmetric networks
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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On Characterizing the Capacity of Neural Networks using Algebraic Topology

William H. Guss 1 Ruslan Salakhutdinov 1

{wguss, rsalakhu}@cs.cmu.edu

Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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method for comparing generative adversarial net‐
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis

B. Rieck et al., ‘A persistent Weisfeiler–Lehman pro‐
cedure for graph classification’

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
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Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1

A universal persistence scale space kernel

K. Xia and G. Wei, ‘Multidimensional persistence in
biomolecular data’

Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Geometry Helps to Compare Persistence Diagrams
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in

1

ar
X

iv
:1

81
1.

04
04

9v
1 

 [
cs

.S
I]

  9
 N

ov
 2

01
8

Link prediction

S. Chowdhury and F. Mémoli, ‘A functorial Dowker
theorem and persistent homology of asymmetric
networks’

Journal of Applied and Computational Topology (2018) 2:115–175
https://doi.org/10.1007/s41468-018-0020-6

A functorial Dowker theorem and persistent homology
of asymmetric networks

Samir Chowdhury1 · Facundo Mémoli1,2

Received: 4 January 2018 / Accepted: 4 September 2018 / Published online: 12 September 2018
© Springer Nature Switzerland AG 2018

Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’

Graph Filtration Learning

Christoph Hofer
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Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12692

Persistence diagram vectorisation

B. Rieck and H. Leitte, ‘Persistent homology for the
evaluation of dimensionality reduction schemes’

Eurographics Conference on Visualization (EuroVis) 2015
H. Carr, K.-L. Ma, and G. Santucci
(Guest Editors)

Volume 34 (2015), Number 3

Persistent Homology for the Evaluation of

Dimensionality Reduction Schemes

B. Rieck and H. Leitte

Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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merical Mathematics RAS. Correspondence to: Valentin Khrulkov
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Persistent Homology for the Evaluation of

Dimensionality Reduction Schemes
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-

Approximating the Wasserstein distance

C. Hofer et al., ‘Deep learning with topological sig‐
natures’

Deep Learning with Topological Signatures

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Andreas Uhl
Department of Computer Science
University of Salzburg, Austria

uhl@cosy.sbg.ac.at

Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Link prediction
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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On Characterizing the Capacity of Neural Networks using Algebraic Topology
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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method for comparing generative adversarial net‐
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
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Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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Extracting insights from the shape of
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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B. Rieck and H. Leitte

Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-

Approximating the Wasserstein distance

C. Hofer et al., ‘Deep learning with topological sig‐
natures’

Deep Learning with Topological Signatures

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Andreas Uhl
Department of Computer Science
University of Salzburg, Austria

uhl@cosy.sbg.ac.at

Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent
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Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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works’

Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities

M. Carrière et al., ‘PersLay: A Simple and Versatile
Neural Network Layer for Persistence Diagrams’

PersLay: A Simple and Versatile Neural Network
Layer for Persistence Diagrams

Mathieu Carrière
Rabadan Lab

Columbia University
New York, US.

mc4660@columbia.edu

Frédéric Chazal
Datashape, Inria Saclay

Palaiseau, France.
frederic.chazal@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
ike.yuichi@fujitsu.com

Théo Lacombe
Datashape, Inria Saclay

Palaiseau, France.
theo.lacombe@inria.fr

Martin Royer
Datashape, Inria Saclay

Palaiseau, France.
martin.royer@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
umeda.yuhei@fujitsu.com

Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do

Preprint. Under review.
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
P. Y. Lum1, G. Singh1, A. Lehman1, T. Ishkanov1, M. Vejdemo-Johansson2, M. Alagappan1, J. Carlsson3

& G. Carlsson1,4

1Ayasdi Inc., Palo Alto, CA, 2School of Computer Science, Jack Cole Building, North Haugh, St. Andrews KY16 9SX, Scotland,
United Kingdom, 3Industrial and Systems Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA,
4Department of Mathematics, Stanford University, Stanford, CA, 94305, USA.

This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12655

Persistence‐based metric for dimensionality reduction

J. Reininghaus et al., ‘A stable multi‐scale kernel for
topological machine learning’

A Stable Multi-Scale Kernel for Topological Machine Learning 

Jan Reininghaus, Stefan Huber 

1ST Austria 

Ulrich Bauer Roland Kwitt 

University of Salzburg, Austria 1ST Austria, TU MUnchen 

Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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<khrulkov.v@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 and Steve Y. Oudot1 and Maks Ovsjanikov2

1INRIA Saclay 2LIX, École Polytechnique

Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 
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a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in

1

ar
X

iv
:1

81
1.

04
04

9v
1 

 [
cs

.S
I]

  9
 N

ov
 2

01
8

Link prediction
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 

4741 

Persistence scale space kernel

R. Kwitt et al., ‘Statistical topological data analysis ‐
A kernel perspective’

Statistical Topological Data Analysis –
A Kernel Perspective

Roland Kwitt
Department of Computer Science

University of Salzburg
rkwitt@gmx.at

Stefan Huber
IST Austria

stefan.huber@ist.ac.at

Marc Niethammer
Department of Computer Science and BRIC

UNC Chapel Hill
mn@cs.unc.edu

Weili Lin
Department of Radiology and BRIC

UNC Chapel Hill
weili_lin@med.unc.edu

Ulrich Bauer
Department of Mathematics

Technische Universität München (TUM)
ulrich@bauer.org

Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-337.html.

Grid‐based persistence diagram vectorisation

M. Carrière et al., ‘Sliced Wasserstein Kernel for per‐
sistence diagrams’

Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-

ar
X

iv
:1

80
2.

04
44

3v
1 

 [
cs

.L
G

] 
 1

3 
Fe

b 
20

18

Analysing the capacity of neural networks
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams

C. Hofer et al., ‘Connectivity‐optimized representa‐
tion learning via persistent homology’

Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’

Graph Filtration Learning

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Topological Autoencoders
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Bastian Rieck∗‡

bastian.rieck@bsse.ethz.ch
Karsten Borgwardt∗‡

karsten.borgwardt@bsse.ethz.ch

Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations

K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
selection’

Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection

B. Rieck et al., ‘Neural Persistence: A complexity
measure for deep neural networks using algebraic
topology’

Published as a conference paper at ICLR 2019

NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
1DEPARTMENT OF BIOSYSTEMS SCIENCE AND ENGINEERING, ETH ZURICH, SWITZERLAND
2SIB SWISS INSTITUTE OF BIOINFORMATICS, SWITZERLAND
†These authors contributed equally

ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis

B. Rieck et al., ‘A persistent Weisfeiler–Lehman pro‐
cedure for graph classification’

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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P. Y. Lum et al., ‘Extracting insights from the shape
of complex data using topology’

Extracting insights from the shape of
complex data using topology
P. Y. Lum1, G. Singh1, A. Lehman1, T. Ishkanov1, M. Vejdemo-Johansson2, M. Alagappan1, J. Carlsson3

& G. Carlsson1,4

1Ayasdi Inc., Palo Alto, CA, 2School of Computer Science, Jack Cole Building, North Haugh, St. Andrews KY16 9SX, Scotland,
United Kingdom, 3Industrial and Systems Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA,
4Department of Mathematics, Stanford University, Stanford, CA, 94305, USA.

This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12692

Persistence diagram vectorisation

B. Rieck and H. Leitte, ‘Persistent homology for the
evaluation of dimensionality reduction schemes’

Eurographics Conference on Visualization (EuroVis) 2015
H. Carr, K.-L. Ma, and G. Santucci
(Guest Editors)

Volume 34 (2015), Number 3

Persistent Homology for the Evaluation of

Dimensionality Reduction Schemes

B. Rieck and H. Leitte

Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Exploring and Comparing Clusterings of Multivariate Data Sets
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
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2SIB SWISS INSTITUTE OF BIOINFORMATICS, SWITZERLAND
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
P. Y. Lum1, G. Singh1, A. Lehman1, T. Ishkanov1, M. Vejdemo-Johansson2, M. Alagappan1, J. Carlsson3

& G. Carlsson1,4
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 and Steve Y. Oudot1 and Maks Ovsjanikov2

1INRIA Saclay 2LIX, École Polytechnique

Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
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<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities

M. Carrière et al., ‘PersLay: A Simple and Versatile
Neural Network Layer for Persistence Diagrams’

PersLay: A Simple and Versatile Neural Network
Layer for Persistence Diagrams

Mathieu Carrière
Rabadan Lab

Columbia University
New York, US.

mc4660@columbia.edu

Frédéric Chazal
Datashape, Inria Saclay

Palaiseau, France.
frederic.chazal@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
ike.yuichi@fujitsu.com

Théo Lacombe
Datashape, Inria Saclay

Palaiseau, France.
theo.lacombe@inria.fr

Martin Royer
Datashape, Inria Saclay

Palaiseau, France.
martin.royer@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
umeda.yuhei@fujitsu.com

Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.10.014

⇑ Corresponding author. Fax: +1 650 725 4066.
E-mail addresses: aadcock@stanford.edu (A. Adcock), dlrubin@stanford.edu

(D. Rubin), gunnar@math.stanford.edu (G. Carlsson).

Computer Vision and Image Understanding 121 (2014) 36–42

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

Classifying lesions using barcodes

P. Bubenik, ‘Statistical topological data analysis using
persistence landscapes’

Journal of Machine Learning Research 16 (2015) 77-102 Submitted 7/14; Published 1/15

Statistical Topological Data Analysis using Persistence
Landscapes

Peter Bubenik peter.bubenik@gmail.com

Department of Mathematics

Cleveland State University

Cleveland, OH 44115-2214, USA

Editor: David Dunson

Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.
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Directed network analysis
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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Geometry Score: A Method For Comparing Generative Adversarial Networks
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Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams

C. Hofer et al., ‘Connectivity‐optimized representa‐
tion learning via persistent homology’

Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’

Graph Filtration Learning

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
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mn@cs.unc.edu

Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Topological Autoencoders
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations

K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
selection’

Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection

B. Rieck et al., ‘Neural Persistence: A complexity
measure for deep neural networks using algebraic
topology’
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
1DEPARTMENT OF BIOSYSTEMS SCIENCE AND ENGINEERING, ETH ZURICH, SWITZERLAND
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis

B. Rieck et al., ‘A persistent Weisfeiler–Lehman pro‐
cedure for graph classification’

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
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<khrulkov.v@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do

Preprint. Under review.
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Topological Autoencoders
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Bastian Rieck∗‡
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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K. N. Ramamurthy et al., ‘Topological data analysis
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
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2SIB SWISS INSTITUTE OF BIOINFORMATICS, SWITZERLAND
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Classifying lesions using barcodes
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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Extracting insights from the shape of
complex data using topology
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& G. Carlsson1,4
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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http://dx.doi.org/10.1016/j.cviu.2013.10.014

⇑ Corresponding author. Fax: +1 650 725 4066.
E-mail addresses: aadcock@stanford.edu (A. Adcock), dlrubin@stanford.edu

(D. Rubin), gunnar@math.stanford.edu (G. Carlsson).

Computer Vision and Image Understanding 121 (2014) 36–42

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

Classifying lesions using barcodes

P. Bubenik, ‘Statistical topological data analysis using
persistence landscapes’

Journal of Machine Learning Research 16 (2015) 77-102 Submitted 7/14; Published 1/15

Statistical Topological Data Analysis using Persistence
Landscapes

Peter Bubenik peter.bubenik@gmail.com

Department of Mathematics

Cleveland State University

Cleveland, OH 44115-2214, USA

Editor: David Dunson

Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 
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a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for

Michael Kerber and Arnur Nigmetov acknowledge support by the Max Planck Center for Visual Computing
and Communication. Dmitriy Morozov is supported by Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231.
Authors’ addresses: M. Kerber and A. Nigmetov, Institute of Geometry, Graz University of Technology,
8010 Graz, Austria; emails: {kerber, nigmetov}@tugraz.at; D. Morozov, Lawrence Berkeley National Lab, 1
Cyclotron Road, Mailstop 59R-3103, Berkeley, CA 94720; email: dmorozov@lbl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-6654/2017/09-ART1.4 $15.00
DOI: http://dx.doi.org/10.1145/3064175

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Approximate metrics for persistence diagrams

T. Qaiser et al., ‘Persistent homology for fast tumor
segmentation in whole slide histology images’

Persistence‐based features for histology classification

B. Rieck and H. Leitte, ‘Exploring and comparing
clusterings of multivariate data sets using persistent
homology’

Eurographics Conference on Visualization (EuroVis) 2016
K-L. Ma, G. Santucci, and J. J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Exploring and Comparing Clusterings of Multivariate Data Sets
Using Persistent Homology

B. Rieck1,2 and H. Leitte1

1TU Kaiserslautern, Germany
2Heidelberg University, Germany

Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
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by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan
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Makoto Yamada
Kyoto University, Japan
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams
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Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12655

Persistence‐based metric for dimensionality reduction

J. Reininghaus et al., ‘A stable multi‐scale kernel for
topological machine learning’

A Stable Multi-Scale Kernel for Topological Machine Learning 

Jan Reininghaus, Stefan Huber 

1ST Austria 

Ulrich Bauer Roland Kwitt 

University of Salzburg, Austria 1ST Austria, TU MUnchen 

Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation
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Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities

M. Carrière et al., ‘PersLay: A Simple and Versatile
Neural Network Layer for Persistence Diagrams’

PersLay: A Simple and Versatile Neural Network
Layer for Persistence Diagrams

Mathieu Carrière
Rabadan Lab

Columbia University
New York, US.

mc4660@columbia.edu

Frédéric Chazal
Datashape, Inria Saclay

Palaiseau, France.
frederic.chazal@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
ike.yuichi@fujitsu.com

Théo Lacombe
Datashape, Inria Saclay

Palaiseau, France.
theo.lacombe@inria.fr

Martin Royer
Datashape, Inria Saclay

Palaiseau, France.
martin.royer@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
umeda.yuhei@fujitsu.com

Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
1DEPARTMENT OF BIOSYSTEMS SCIENCE AND ENGINEERING, ETH ZURICH, SWITZERLAND
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.

1

ar
X

iv
:1

90
4.

12
18

9v
1 

 [
cs

.C
G

] 
 2

7 
A

pr
 2

01
9

An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
P. Y. Lum1, G. Singh1, A. Lehman1, T. Ishkanov1, M. Vejdemo-Johansson2, M. Alagappan1, J. Carlsson3

& G. Carlsson1,4

1Ayasdi Inc., Palo Alto, CA, 2School of Computer Science, Jack Cole Building, North Haugh, St. Andrews KY16 9SX, Scotland,
United Kingdom, 3Industrial and Systems Engineering, University of Minnesota, 111 Church St. SE, Minneapolis, MN 55455, USA,
4Department of Mathematics, Stanford University, Stanford, CA, 94305, USA.

This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.

Preprint. Under review.

ar
X

iv
:1

90
6.

00
72

2v
1 

 [
cs

.L
G

] 
 3

 J
un

 2
01

9

Optimising autoencoder representations

K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
selection’

Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
Inria Saclay Île-de-France, Bâtiment Alan Turing, 1 rue Honoré d’Estienne d’Orves,
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 

4741 

Persistence scale space kernel

R. Kwitt et al., ‘Statistical topological data analysis ‐
A kernel perspective’

Statistical Topological Data Analysis –
A Kernel Perspective

Roland Kwitt
Department of Computer Science

University of Salzburg
rkwitt@gmx.at

Stefan Huber
IST Austria

stefan.huber@ist.ac.at

Marc Niethammer
Department of Computer Science and BRIC

UNC Chapel Hill
mn@cs.unc.edu

Weili Lin
Department of Radiology and BRIC

UNC Chapel Hill
weili_lin@med.unc.edu

Ulrich Bauer
Department of Mathematics

Technische Universität München (TUM)
ulrich@bauer.org

Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Link prediction

S. Chowdhury and F. Mémoli, ‘A functorial Dowker
theorem and persistent homology of asymmetric
networks’
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A functorial Dowker theorem and persistent homology
of asymmetric networks
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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On Characterizing the Capacity of Neural Networks using Algebraic Topology

William H. Guss 1 Ruslan Salakhutdinov 1

{wguss, rsalakhu}@cs.cmu.edu

Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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method for comparing generative adversarial net‐
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
makoto.yamada@riken.jp

Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
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Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Multidimensional fingerprints for molecules
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Geometry Helps to Compare Persistence Diagrams
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’

Graph Filtration Learning

Christoph Hofer
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do

Preprint. Under review.
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
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Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.

1

ar
X

iv
:1

90
4.

12
18

9v
1 

 [
cs

.C
G

] 
 2

7 
A

pr
 2

01
9

An optimised weight function for persistence images

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



Persistent homology
The second decade (almost)

2013201420152016201720182019

P. Y. Lum et al., ‘Extracting insights from the shape
of complex data using topology’

Extracting insights from the shape of
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.

Persistence landscapes

M. Carrière et al., ‘Stable topological signatures for
points on 3D shapes’

Eurographics Symposium on Geometry Processing 2015
Mirela Ben-Chen and Ligang Liu
(Guest Editors)

Volume 34 (2015), Number 5

Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 and Steve Y. Oudot1 and Maks Ovsjanikov2
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Persistent Homology for the Evaluation of

Dimensionality Reduction Schemes
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for

Michael Kerber and Arnur Nigmetov acknowledge support by the Max Planck Center for Visual Computing
and Communication. Dmitriy Morozov is supported by Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231.
Authors’ addresses: M. Kerber and A. Nigmetov, Institute of Geometry, Graz University of Technology,
8010 Graz, Austria; emails: {kerber, nigmetov}@tugraz.at; D. Morozov, Lawrence Berkeley National Lab, 1
Cyclotron Road, Mailstop 59R-3103, Berkeley, CA 94720; email: dmorozov@lbl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-6654/2017/09-ART1.4 $15.00
DOI: http://dx.doi.org/10.1145/3064175

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Approximate metrics for persistence diagrams

T. Qaiser et al., ‘Persistent homology for fast tumor
segmentation in whole slide histology images’

Persistence‐based features for histology classification

B. Rieck and H. Leitte, ‘Exploring and comparing
clusterings of multivariate data sets using persistent
homology’

Eurographics Conference on Visualization (EuroVis) 2016
K-L. Ma, G. Santucci, and J. J. van Wijk
(Guest Editors)

Volume 35 (2016), Number 3

Exploring and Comparing Clusterings of Multivariate Data Sets
Using Persistent Homology

B. Rieck1,2 and H. Leitte1

1TU Kaiserslautern, Germany
2Heidelberg University, Germany

Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
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Proceedings of the 34 th International Conference on Machine
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Link prediction

S. Chowdhury and F. Mémoli, ‘A functorial Dowker
theorem and persistent homology of asymmetric
networks’
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A functorial Dowker theorem and persistent homology
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem

Mathematics Subject Classification 55U99 · 68U05 · 55N35

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
1.1 Contributions and an overview of our approach . . . . . . . . . . . . . . . . . . . . . . . . 117
1.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B Facundo Mémoli
memoli@math.osu.edu

Samir Chowdhury
chowdhury.57@osu.edu

1 Department of Mathematics, The Ohio State University, Columbus, OH, USA

2 Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA

123

Directed network analysis

W. H. Guss and R. Salakhutdinov, ‘On characteriz‐
ing the capacity of neural networks using algebraic
topology’

On Characterizing the Capacity of Neural Networks using Algebraic Topology

William H. Guss 1 Ruslan Salakhutdinov 1
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks

V. Khrulkov and I. Oseledets, ‘Geometry score: A
method for comparing generative adversarial net‐
works’

Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation

T. Le and M. Yamada, ‘Persistence Fisher kernel:
a Riemannian manifold kernel for persistence dia‐
grams’

Persistence Fisher Kernel: A Riemannian Manifold
Kernel for Persistence Diagrams

Tam Le
RIKEN Center for Advanced Intelligence Project, Japan

tam.le@riken.jp

Makoto Yamada
Kyoto University, Japan

RIKEN Center for Advanced Intelligence Project, Japan
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

New kernel based on Fisher information metric
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks

Bastian Rieck, Member, IEEE, Ulderico Fugacci, Member, IEEE,
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(a) (b)

0 10 20 30
0

10

20

30

Creation

D
es

tr
uc

ti
on

(c)
0

0

12

12

14

14

18

18

19

19

21

21

22

22

24

24

25

25

26

26

27

27

28

28

29

29

30

30

32

32

(d)

Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;
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ACM Reference Format:
Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. 2017. Geometry helps to compare persistence dia-
grams. J. Exp. Algorithmics 22, 1, Article 1.4 (September 2017), 20 pages.
DOI: http://dx.doi.org/10.1145/3064175

1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in

1

ar
X

iv
:1

81
1.

04
04

9v
1 

 [
cs

.S
I]

  9
 N

ov
 2

01
8

Link prediction

S. Chowdhury and F. Mémoli, ‘A functorial Dowker
theorem and persistent homology of asymmetric
networks’

Journal of Applied and Computational Topology (2018) 2:115–175
https://doi.org/10.1007/s41468-018-0020-6

A functorial Dowker theorem and persistent homology
of asymmetric networks

Samir Chowdhury1 · Facundo Mémoli1,2

Received: 4 January 2018 / Accepted: 4 September 2018 / Published online: 12 September 2018
© Springer Nature Switzerland AG 2018

Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces

S. Huntsman, ‘Topological mixture estimation’

Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as

Preprint. Under review.
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Connectivity-Optimized Representation Learning via Persistent Homology
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations
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Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Extracting insights from the shape of
complex data using topology
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.

Persistence landscapes

M. Carrière et al., ‘Stable topological signatures for
points on 3D shapes’

Eurographics Symposium on Geometry Processing 2015
Mirela Ben-Chen and Ligang Liu
(Guest Editors)

Volume 34 (2015), Number 5

Stable Topological Signatures for Points on 3D Shapes

Mathieu Carrière1 and Steve Y. Oudot1 and Maks Ovsjanikov2

1INRIA Saclay 2LIX, École Polytechnique

Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data
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Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23953

Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as

[a] K. Xia, G.-W. Wei

Department of Mathematics, Michigan State University, Michigan 48824

E-mail: wei@math.msu.edu

[b] G.-W. Wei

Department of Electrical and Computer Engineering, Michigan State

University, Michigan 48824

[c] G.-W. Wei

Department of Biochemistry and Molecular Biology, Michigan State

University, Michigan 48824

Contract grant sponsor: NSF grants; Contract grant numbers: DMS-

1160352; IIS-1302285; Contract grant sponsor: NIH Grant; Contract grant

number: R01GM-090208; Contract grant sponsor: MSU Center for

Mathematical Molecular Biosciences Initiative

VC 2015 Wiley Periodicals, Inc.

1502 Journal of Computational Chemistry 2015, 36, 1502–1520 WWW.CHEMISTRYVIEWS.COM

FULL PAPER WWW.C-CHEM.ORG

Multidimensional fingerprints for molecules

M. Kerber et al., ‘Geometry helps to compare per‐
sistence diagrams’

Geometry Helps to Compare Persistence Diagrams

MICHAEL KERBER, Graz University of Technology, Graz, Austria
DMITRIY MOROZOV, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
ARNUR NIGMETOV, Graz University of Technology, Graz, Austria

Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams

Mathieu Carrière 1 Marco Cuturi 2 Steve Oudot 1

Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

A persistence diagram layer for deep learning
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.
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Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Analysing the capacity of neural networks
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).

Persistence for mixture estimation
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.

Persistence for clique communities
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1
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A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification
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Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Stable Topological Signatures for Points on 3D Shapes
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Persistent Homology for the Evaluation of

Dimensionality Reduction Schemes
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12655

Persistence‐based metric for dimensionality reduction

J. Reininghaus et al., ‘A stable multi‐scale kernel for
topological machine learning’

A Stable Multi-Scale Kernel for Topological Machine Learning 

Jan Reininghaus, Stefan Huber 

1ST Austria 

Ulrich Bauer Roland Kwitt 

University of Salzburg, Austria 1ST Austria, TU MUnchen 

Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in

1
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The
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Sliced Wasserstein Kernel for Persistence Diagrams
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
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a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Understanding and Predicting Links in Graphs: A Persistent

Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
§IIT Hyderabad, India. mkaul@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
dence to: Steve Huntsman <steve.huntsman@baesystems.com>.
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Clique Community Persistence:
A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity
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Correspondence to: Karthikeyan Natesan Ramamurthy
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis
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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

G
athering and storage of data of various kinds are activities that are of fundamental importance in all areas
of science and engineering, social sciences, and the commercial world. The amount of data being gathered
and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to

cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block1, here we
demonstrate the importance of understanding the ‘‘shape’’ of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18th century, with the work of
the Swiss mathematician Leonhard Euler2. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets3. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are ‘‘loops’’ (continuous circular segments) and ‘‘flares’’ (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing

D. R. Sheehy (B)
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a b s t r a c t

In this paper we present a methodology of classifying hepatic (liver) lesions using multidimensional per-
sistent homology, the matching metric (also called the bottleneck distance), and a support vector
machine. We present our classification results on a dataset of 132 lesions that have been outlined and
annotated by radiologists. We find that topological features are useful in the classification of hepatic
lesions. We also find that two-dimensional persistent homology outperforms one-dimensional persistent
homology in this application.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Medical imaging technology allows doctors access to portions
of the human body which are visually inaccessible to the human
eye. Often inspecting these medical images is a labor intensive pro-
cess performed by diagnostic radiologists. The accuracy of the radi-
ologist is obtained through training and experience [14] but even
with extensive training and experience there are variations in
interpretations and accuracy among radiologists [4,16]. Despite
an increasing emphasis on evidence-based medicine and improved
imaging techniques, quantitative ‘gold-standards’ and clear guide-
lines for a radiologist’s role in quantitative measurements remain
elusive [13]. Image processing provides a way of both automating
portions of the examination as well as providing standard tools for
radiologists to use when reading an image. The qualitative nature
of many radiological observations suggests that topological fea-
tures may be useful in the classification and interpretation of med-
ical images.

In this paper, we explore automatic classification methods of
computed tomography (CT) scans of hepatic (liver) lesions. We
have a dataset of CT scans of 132 hepatic lesions along with an out-
line, diagnosis and semantic descriptors of the lesion provided by a
radiologist. There are nine lesion types represented in the data,
with the vast majority of the lesions (90 lesions) evenly split
between cysts and metastases, followed by hemangiomas (18
lesions), hepatocellular carcinomas (HCC, 11 lesions), focal nodules
(5 lesions), abscesses (3 lesions), neuroendocrine neoplasms (NeN,

3 lesions), a single laceration and a single fat deposit (see Figs. 1
and 2).

It has been demonstrated that semantic features are useful for
classification in hepatic lesions [14]. This indicates that visually
identifiable structures exist within the lesions, but it has been dif-
ficult finding quantitative methods of defining these structures.
For example, consider the six images in Figs. 3 and 4. The first
three show the abscesses contained in our dataset. The second
three show hemangiomas (deformations of blood vessels). The
abscesses present what is called ‘cluster of grapes’ morphology.
But the arrangements of this structure are very different in each
lesion. Similarly, the hemangiomas show the characteristic large
dark central region with dense white regions on the outer edge
of the lesion. Yet, the hemangiomas lack a rotational orientation,
different numbers of the two region types exist and the forma-
tions vary in size and shape. The qualitative nature of these
observations has made it difficult to find quantitative measures
of the structures.

1.1. Prior work

As mentioned above, semantic features have been one success-
ful method for classifying the liver lesions [14]. This has led to pre-
liminary investigations into using quantitative features to predict
semantic features, which can be used to classify the lesions [12].
Additionally, computational features have shown some success in
directly classifying liver lesions [12,14,18]. Most of these studies
use a large number of various types of features (intensity histo-
grams, wavelets, boundary features, etc.) to classify the lesions.
Shape descriptors for liver lesions have also been investigated
and found to work well in retrieving similar lesions [17].

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
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Abstract

We define a new topological summary for data that we call the persistence landscape. Since
this summary lies in a vector space, it is easy to combine with tools from statistics and
machine learning, in contrast to the standard topological summaries. Viewed as a random
variable with values in a Banach space, this summary obeys a strong law of large numbers
and a central limit theorem. We show how a number of standard statistical tests can be
used for statistical inference using this summary. We also prove that this summary is
stable and that it can be used to provide lower bounds for the bottleneck and Wasserstein
distances.

Keywords: topological data analysis, statistical topology, persistent homology, topolog-
ical summary, persistence landscape

1. Introduction

Topological data analysis (TDA) consists of a growing set of methods that provide insight
to the “shape” of data (see the surveys Ghrist, 2008; Carlsson, 2009). These tools may
be of particular use in understanding global features of high dimensional data that are not
readily accessible using other techniques. The use of TDA has been limited by the difficulty
of combining the main tool of the subject, the barcode or persistence diagram with statistics
and machine learning. Here we present an alternative approach, using a new summary that
we call the persistence landscape. The main technical advantage of this descriptor is that
it is a function and so we can use the vector space structure of its underlying function
space. In fact, this function space is a separable Banach space and we apply the theory of
random variables with values in such spaces. Furthermore, since the persistence landscapes
are sequences of piecewise-linear functions, calculations with them are much faster than
the corresponding calculations with barcodes or persistence diagrams, removing a second
serious obstruction to the wider use of topological methods in data analysis.

Notable successes of TDA include the discovery of a subgroup of breast cancers by
Nicolau et al. (2011), an understanding of the topology of the space of natural images by
Carlsson et al. (2008) and the topology of orthodontic data by Heo et al. (2012), and the
detection of genes with a periodic profile by Dequéant et al. (2008). De Silva and Ghrist
(2007b,a) used topology to prove coverage in sensor networks.

c©2015 Peter Bubenik.
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Figure 1: Our signatures characterize a point x by the birth (leftmost) and death (second left) of the topological features (here,
non-trivial loops) in the neighborhood of x in a provably stable way. We show how to compactly encode these events in a vector
without losing the stability properties. This is useful in a variety of contexts, including shape segmentation and labeling (as
shown on the right) using linear classifiers such as SVM.

Abstract

Comparing points on 3D shapes is among the fundamental operations in shape analysis. To facilitate this task,
a great number of local point signatures or descriptors have been proposed in the past decades. However, the
vast majority of these descriptors concentrate on the local geometry of the shape around the point, and thus are
insensitive to its connectivity structure. By contrast, several global signatures have been proposed that successfully
capture the overall topology of the shape and thus characterize the shape as a whole. In this paper, we propose
the first point descriptor that captures the topology structure of the shape as ‘seen’ from a single point, in a
multiscale and provably stable way. We also demonstrate how a large class of topological signatures, including
ours, can be mapped to vectors, opening the door to many classical analysis and learning methods. We illustrate
the performance of this approach on the problems of supervised shape labeling and shape matching. We show that
our signatures provide complementary information to existing ones and allow to achieve better performance with
less training data in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Shape analysis and comparison lie at the heart of many prob-
lems in computer graphics, including shape retrieval and
classification [FK04], shape labeling [KHS10], shape inter-

polation [KMP07], and deformation transfer [SP04], among
many others. In recent years, a large number of approaches
have been developed for these tasks, which are often based
on devising new signatures or descriptors. Such descrip-
tors facilitate comparison tasks by encoding the information

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract

High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC⇤13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-

c� 2015 The Author(s)
Computer Graphics Forum c� 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Abstract 

Topological data analysis offers a rich source of valu­
able information to study vision problems. Yet, so far we 
lack a theoretically sound connection to popular kernel­
based learning techniques, such as kernel SVMs or kernel 
peA. In this work, we establish such a connection by de­
signing a multi-scale kernel for persistence diagrams, a sta­
ble summary representation of topological features in data. 
We show that this kernel is positive definite and prove its 
stability with respect to the 1- Wasserstein distance. Ex­
periments on two benchmark datasets for 3D shape clas­
sification/retrieval and texture recognition show consider­
able performance gains of the proposed method compared 
to an alternative approach that is based on the recently in­
troduced persistence landscapes. 

1. Introduction 
In many computer vision problems, data (e.g., images, 

meshes, point clouds, etc. ) is piped through complex pro­
cessing chains in order to extract information that can be 
used to address high-level inference tasks, such as recogni­
tion, detection or segmentation. The extracted information 
might be in the form of low-level appearance descriptors, 
e.g., SIFT [20], or of higher-level nature, e.g., activations 
at specific layers of deep convolutional networks [18]. In 
recognition problems, for instance, it is then customary to 
feed the consolidated data to a discriminant classifier such 
as the popular support vector machine (SVM), a kernel­
based learning technique. 

While there has been substantial progress on extract­
ing and encoding discriminative information, only recently 
have people started looking into the topological structure 
of the data as an additional source of information. With the 
emergence of topological data analysis (TDA) [4], compu­
tational tools for efficiently identifying topological structure 
have become readily available. Since then, several authors 
have demonstrated that methods of TDA can capture char­
acteristics of the data that other methods often fail to reveal, 
cf [26, 19]. 

Along these lines, studying persistent homology [11] is 

978-1-4673-6964-0/15/$31.00 ©2015 IEEE 

a particularly popular method for TDA, since it captures the 
birth and death times of topological features, e.g., connected 
components, holes, etc., at multiple scales. This informa­
tion is summarized by the persistence diagram, a multiset 
of points in the plane. The key feature of persistent ho­
mology is its stability: small changes in the input data lead 
to small changes in the Wasserstein distance of the asso­
ciated persistence diagrams [10]. Considering the discrete 
nature of topological information, the existence of such a 
well-behaved summary is perhaps surprising. 

Note that persistence diagrams together with the Wasser­
stein distance only form a metric space. Thus it is not pos­
sible to directly employ persistent homology in the large 
class of machine learning techniques that require a Hilbert 
space structure, like SVMs or PCA. This obstacle is typi­
cally circumvented by defining a kernel function on the do­
main containing the data, which in turn defines a Hilbert 
space structure implicitly. While the Wasserstein distance 
itself does not naturally lead to a valid kernel (see supple­
mentary material for details), we show that it is possible to 
define a kernel for persistence diagrams that is stable W.r. t. 
the 1-Wasserstein distance. This is the main contribution of 
this paper. 

Contribution. We propose a (positive definite) multi­
scale kernel for persistence diagrams (see Fig. 1). This ker­
nel is defined via an L2-valued feature map, based on ideas 
from scale space theory [16]. We show that our feature map 
is Lipschitz continuous with respect to the 1-Wasserstein 
distance, thereby maintaining the stability property of per­
sistent homology. The scale parameter of our kernel con­
trols its robustness to noise and can be tuned to the data. 
We investigate, in detail, the theoretical properties of the 
kernel, and demonstrate its applicability on shape classifi­
cation/retrieval and texture recognition benchmarks. 

2. Related work 
Methods that leverage topological information for com­

puter vision or medical image analysis can roughly be 
grouped into two categories. In the first category, we iden­
tify previous work that directly utilizes topological infor­
mation to address a specific problem, such as topology­
guided segmentation. In the second category, we identify 
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Abstract

We consider the problem of statistical computations with persistence diagrams, a
summary representation of topological features in data. These diagrams encode
persistent homology, a widely used invariant in topological data analysis. While
several avenues towards a statistical treatment of the diagrams have been explored
recently, we follow an alternative route that is motivated by the success of methods
based on the embedding of probability measures into reproducing kernel Hilbert
spaces. In fact, a positive definite kernel on persistence diagrams has recently
been proposed, connecting persistent homology to popular kernel-based learning
techniques such as support vector machines. However, important properties of that
kernel enabling a principled use in the context of probability measure embeddings
remain to be explored. Our contribution is to close this gap by proving universality
of a variant of the original kernel, and to demonstrate its effective use in two-
sample hypothesis testing on synthetic as well as real-world data.

1 Introduction

Over the past years, advances in adopting methods from algebraic topology to study the “shape” of
data (e.g., point clouds, images, shapes) have given birth to the field of topological data analysis
(TDA) [5]. In particular, persistent homology has been widely established as a tool for capturing
“relevant” topological features at multiple scales. The output is a summary representation in the
form of so called barcodes or persistence diagrams, which, roughly speaking, encode the life span
of the features. These “topological summaries” have been successfully used in a variety of different
fields, including, but not limited to, computer vision and medical imaging. Applications range from
the analysis of cortical surface thickness [8] to the structure of brain networks [15], brain artery trees
[2] or histology images for breast cancer analysis [22].

Despite the success of TDA in these areas, a statistical treatment of persistence diagrams (e.g.,
computing means or variances) turns out to be difficult, not least because of the unusual structure
of the barcodes as intervals, rather than numerical quantities [1]. While substantial advancements in
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Multidimensional Persistence in Biomolecular Data

Kelin Xia[a] and Guo-Wei Wei*[a,b,c]

Persistent homology has emerged as a popular technique for

the topological simplification of big data, including biomolecu-

lar data. Multidimensional persistence bears considerable

promise to bridge the gap between geometry and topology.

However, its practical and robust construction has been a chal-

lenge. We introduce two families of multidimensional persist-

ence, namely pseudomultidimensional persistence and

multiscale multidimensional persistence. The former is gener-

ated via the repeated applications of persistent homology fil-

tration to high-dimensional data, such as results from

molecular dynamics or partial differential equations. The latter

is constructed via isotropic and anisotropic scales that create

new simiplicial complexes and associated topological spaces.

The utility, robustness, and efficiency of the proposed topolog-

ical methods are demonstrated via protein folding, protein

flexibility analysis, the topological denoising of cryoelectron

microscopy data, and the scale dependence of nanoparticles.

Topological transition between partial folded and unfolded

proteins has been observed in multidimensional persistence.

The separation between noise topological signatures and

molecular topological fingerprints is achieved by the Laplace–

Beltrami flow. The multiscale multidimensional persistent

homology reveals relative local features in Betti-0 invariants

and the relatively global characteristics of Betti-1 and Betti-2

invariants. VC 2015 Wiley Periodicals, Inc.
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Introduction

The rapid progress in science and technology has led to the

explosion in biomolecular data. The past decade has witnessed

a rapid growth in gene sequencing. Vast sequence databases

are readily available for entire genomes of many bacteria, arch-

aea, and eukaryotes. The human genome decoding that origi-

nally took 10 years to process can be achieved in a few days

nowadays. The protein data bank (PDB) updates new struc-

tures on a daily basis and has accumulated more than 100,000

tertiary structures. The availability of these structural data ena-

bles the comparative study of evolutionary processes, gene-

sequence-based protein homology modeling of protein struc-

tures and the decryption of the structure–function relation-

ship. The abundant protein sequence and structural

information makes it possible to build up unprecedentedly

comprehensive and accurate theoretical models. One of ulti-

mate goals is to predict protein functions from known protein

sequences and structures, which remains a fabulous challenge.

Fundamental laws of physics described in quantum mechan-

ics (QM), molecular mechanism (MM), continuum mechanics,

statistical mechanics, thermodynamics, and so forth, underpin

most physical models of biomolecular systems. QM methods

are indispensable for chemical reactions, enzymatic processes,

and protein degradations.[1,2] MM approaches are able to eluci-

date the conformational landscapes of proteins.[3] However,

both QM and MM involve an excessively large number of

degrees of freedom and their application to real-time large-

scale protein dynamics becomes prohibitively expensive. For

instance, current computer simulations of protein folding take

many months to come up with a very poor copy of what

Nature administers perfectly within a tiny fraction of a second.

One way to reduce the number of degrees of freedom is to

use time-independent approaches, such as normal mode anal-

ysis (NMA),[4–7] flexibility–rigidity index (FRI),[8,9] and elastic net-

work model (ENM),[10] including Gaussian network model

(GNM)[11–13] and anisotropic network model.[14] Another way is

to incorporate continuum descriptions in atomistic representa-

tion to construct multiscale models for large biological sys-

tems.[1,2,15–19] Implicit solvent models are some of the most

popular approaches for solvation analysis.[20–29] Recently, differ-

ential geometry-based multiscale models have been proposed

for biomolecular structure, solvation, and transport.[30–33] The

other way is to combine several atomic particles into one or a

few pseudo atoms or beads in coarse-grained (CG) mod-

els.[34–37] This approach is efficient for biomolecular processes

occurring at slow time scales and involving large length scales.

All of the aforementioned theoretical models share a com-

mon feature: they are geometry-based approaches[38–40] and

depend on geometric modeling methodologies.[41] Technically,

these approaches use geometric information, namely, atomic

coordinates, angles, distances, areas[40,42,43] and sometimes

curvatures[44–46] as well as physical information, such as
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Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree
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1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for
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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way

© 2016 The Author(s)
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.
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Sliced Wasserstein Kernel for Persistence Diagrams
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Abstract
Persistence diagrams (PDs) play a key role in
topological data analysis (TDA), in which they
are routinely used to describe topological prop-
erties of complicated shapes. PDs enjoy strong
stability properties and have proven their utility
in various learning contexts. They do not, how-
ever, live in a space naturally endowed with a
Hilbert structure and are usually compared with
non-Hilbertian distances, such as the bottleneck
distance. To incorporate PDs in a convex learn-
ing pipeline, several kernels have been proposed
with a strong emphasis on the stability of the re-
sulting RKHS distance w.r.t. perturbations of the
PDs. In this article, we use the Sliced Wasser-
stein approximation of the Wasserstein distance
to define a new kernel for PDs, which is not only
provably stable but also discriminative (with a
bound depending on the number of points in the
PDs) w.r.t. the first diagram distance between
PDs. We also demonstrate its practicality, by de-
veloping an approximation technique to reduce
kernel computation time, and show that our pro-
posal compares favorably to existing kernels for
PDs on several benchmarks.

1. Introduction
Topological Data Analysis (TDA) is an emerging trend in
data science, grounded on topological methods to design
descriptors for complex data—see e.g. (Carlsson, 2009) for
an introduction to the subject. The descriptors of TDA can
be used in various contexts, in particular statistical learn-
ing and geometric inference, where they provide useful in-
sight into the structure of data. Applications of TDA can
be found in a number of scientific areas, including com-
puter vision (Li et al., 2014), materials science (Hiraoka
et al., 2016), and brain science (Singh et al., 2008), to name

1INRIA Saclay 2CREST, ENSAE, Université Paris
Saclay. Correspondence to: Mathieu Carrière <math-
ieu.carriere@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a few. The tools developed in TDA are built upon persis-
tent homology theory (Edelsbrunner & Harer, 2010; Oudot,
2015), and their main output is a descriptor called persis-
tence diagram (PD), which encodes the topology of a space
at all scales in the form of a point cloud with multiplicities
in the plane R2—see Section 2.1 for more details.

PDs as features. The main strength of PDs is their stabil-
ity with respect to perturbations of the data (Chazal et al.,
2009b; 2013). On the downside, their use in learning tasks
is not straightforward. Indeed, a large class of learning
methods, such as SVM or PCA, requires a Hilbert struc-
ture on the descriptors space, which is not the case for the
space of PDs. Actually, many simple operators of Rn, such
as addition, average or scalar product, have no analogues
in that space. Mapping PDs to vectors in Rn or in some
infinite-dimensional Hilbert space is one possible approach
to facilitate their use in discriminative settings.

Related work. A series of recent contributions have pro-
posed kernels for PDs, falling into two classes. The first
class of methods builds explicit feature maps: One can,
for instance, compute and sample functions extracted from
PDs (Bubenik, 2015; Adams et al., 2017; Robins & Turner,
2016); sort the entries of the distance matrices of the
PDs (Carrière et al., 2015); treat the PD points as roots
of a complex polynomial, whose coefficients are concate-
nated (Fabio & Ferri, 2015). The second class of meth-
ods, which is more relevant to our work, defines implicitly
feature maps by focusing instead on building kernels for
PDs. For instance, Reininghaus et al. (2015) use solutions
of the heat differential equation in the plane and compare
them with the usual L2(R2) dot product. Kusano et al.
(2016) handle a PD as a discrete measure on the plane, and
follow by using kernel mean embeddings with Gaussian
kernels—see Section 4 for precise definitions. Both ker-
nels are provably stable, in the sense that the metric they
induce in their respective reproducing kernel Hilbert space
(RKHS) is bounded above by the distance between PDs.
Although these kernels are injective, there is no evidence
that their induced RKHS distances are discriminative and
therefore follow the geometry of the bottleneck distances,
which are more widely accepted distances to compare PDs.

Contributions. In this article, we use the sliced Wasser-
stein (SW) distance (Rabin et al., 2011) to define a new ker-
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.
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Homology Perspective

Sumit Bhatia∗, Bapi Chatterjee†, Deepak Nathani‡and Manohar Kaul§

Abstract

Persistent Homology is a powerful tool in Topological Data Analysis (TDA) to capture
topological properties of data succinctly at different spatial resolutions. For graphical data,
shape, and structure of the neighborhood of individual data items (nodes) is an essential means
of characterizing their properties. In this paper, we propose the use of persistent homology
methods to capture structural and topological properties of graphs and use it to address the
problem of link prediction. We evaluate our approach on seven different real-world datasets and
offer directions for future work.

1 Introduction

A graph data structure representing pairwise relations or interactions among individuals or enti-
ties recurs in diverse real-world applications such as social and professional networks, biological
phenomena such as protein-protein interactions [Coulomb et al., 2005], word co-occurrences [New-
man, 2006], and citation and collaboration networks [Bhatia et al., 2012]. In all these applications,
understanding how the network evolves and being able to predict the formation of new, hitherto
non-existent links is an important problem in the knowledge discovery pipeline and has crucial ap-
plications such as predicting target genes for cancer research [Nagarajan et al., 2015], social network
analysis, and recommendation systems.

Consider a graph G = (V,E), where V = {vi}ni=1 is a finite set of nodes and E = {ek}mk=1 is a
finite set of edges. We denote the edge connecting the pair of node vi, vj ∈ V by eij . We assume
that in G multiple edges for the same pair of nodes do not exist and there is no edge connecting a
node to itself. If G is a directed graph, eij �= eji, whereas, eij = eji if G is undirected.

Let U denote the set of all possible edges in G = ({vi}ni=1, {ek}mk=1). If G is undirected, |U | =
C(n, 2) = n(n − 1)/2, whereas, if G is directed, |U | = 2×C(n, 2) = n(n − 1). The set U − E is
called the set of potential links. Often, in real-world settings, only a small subset of links u ∈ U will
materialize in future with |u| << |U |. Given G = (V ;E), the task of identifying the edges e ∈ u is
challenging and requires understanding and modelling the differences between sets u and U − u.

∗IBM Research AI, New Delhi, India. sumitbhatia@in.ibm.com
†Institute of Science and Technology, Austria. bhaskerchatterjee@gmail.com
‡IIT Hyderabad, India. me15btech11009@iith.ac.in
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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.

Keywords Directed networks · Functorial Dowker theorem · Cycle networks ·
Functorial Nerve Theorem
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Abstract
The learnability of different neural architectures
can be characterized directly by computable mea-
sures of data complexity. In this paper, we re-
frame the problem of architecture selection as
understanding how data determines the most ex-
pressive and generalizable architectures suited to
that data, beyond inductive bias. After suggesting
algebraic topology as a measure for data com-
plexity, we show that the power of a network to
express the topological complexity of a dataset in
its decision region is a strictly limiting factor in
its ability to generalize. We then provide the first
empirical characterization of the topological ca-
pacity of neural networks. Our empirical analysis
shows that at every level of dataset complexity,
neural networks exhibit topological phase tran-
sitions. This observation allowed us to connect
existing theory to empirically driven conjectures
on the choice of architectures for fully-connected
neural networks.

1. Introduction
Deep learning has rapidly become one of the most perva-
sively applied techniques in machine learning. From com-
puter vision (Krizhevsky et al., 2012) and reinforcement
learning (Mnih et al., 2013) to natural language process-
ing (Wu et al., 2016) and speech recognition (Hinton et al.,
2012), the core principles of hierarchical representation and
optimization central to deep learning have revolutionized
the state of the art; see Goodfellow et al. (2016). In each do-
main, a major difficulty lies in selecting the architectures of
models that most optimally take advantage of structure in the
data. In computer vision, for example, a large body of work
((Simonyan & Zisserman, 2014), (Szegedy et al., 2014), (He
et al., 2015), etc.) focuses on improving the initial archi-
tectural choices of Krizhevsky et al. (2012) by developing
novel network topologies and optimization schemes specific

1Machine Learning Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

to vision tasks. Despite the success of this approach, there
are still not general principles for choosing architectures in
arbitrary settings, and in order for deep learning to scale
efficiently to new problems and domains without expert ar-
chitecture designers, the problem of architecture selection
must be better understood.

Theoretically, substantial analysis has explored how vari-
ous properties of neural networks, (eg. the depth, width,
and connectivity) relate to their expressivity and generaliza-
tion capability ((Raghu et al., 2016), (Daniely et al., 2016),
(Guss, 2016)). However, the foregoing theory can only be
used to determine an architecture in practice if it is under-
stood how expressive a model need be in order to solve
a problem. On the other hand, neural architecture search
(NAS) views architecture selection as a compositional hy-
perparameter search ((Saxena & Verbeek, 2016), (Fernando
et al., 2017), (Zoph & Le, 2017)). As a result NAS ideally
yields expressive and powerful architectures, but it is of-
ten difficult to interpret the resulting architectures beyond
justifying their use from their empirical optimality.

We propose a third alternative to the foregoing: data-first
architecture selection. In practice, experts design architec-
tures with some inductive bias about the data, and more
generally, like any hyperparameter selection problem, the
most expressive neural architectures for learning on a par-
ticular dataset are solely determined by the nature of the
true data distribution. Therefore, architecture selection can
be rephrased as follows: given a learning problem (some
dataset), which architectures are suitably regularized and
expressive enough to learn and generalize on that problem?

A natural approach to this question is to develop some ob-
jective measure of data complexity, and then characterize
neural architectures by their ability to learn subject to that
complexity. Then given some new dataset, the problem
of architecture selection is distilled to computing the data
complexity and choosing the appropriate architecture.

For example, take the two datasets D1 and D2 given in Fig-
ure 1(a,b) and Figure 1(c,d) respectively. The first dataset,
D1, consists of positive examples sampled from two disks
and negative examples from their compliment. On the right,
dataset D2 consists of positive points sampled from two
disks and two rings with hollow centers. Under some ge-
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Geometry Score: A Method For Comparing Generative Adversarial Networks

Valentin Khrulkov 1 Ivan Oseledets 1 2

Abstract
One of the biggest challenges in the research of
generative adversarial networks (GANs) is assess-
ing the quality of generated samples and detect-
ing various levels of mode collapse. In this work,
we construct a novel measure of performance of
a GAN by comparing geometrical properties of
the underlying data manifold and the generated
one, which provides both qualitative and quanti-
tative means for evaluation. Our algorithm can
be applied to datasets of an arbitrary nature and
is not limited to visual data. We test the obtained
metric on various real–life models and datasets
and demonstrate that our method provides new
insights into properties of GANs.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) are a class of methods for training generative models,
which have been recently shown to be very successful in pro-
ducing image samples of excellent quality. They have been
applied in numerous areas (Radford et al., 2015; Salimans
et al., 2016; Ho & Ermon, 2016). Briefly, this framework
can be described as follows. We attempt to mimic a given
target distribution pdata(x) by constructing two networks
G(z;θ(G)) and D(x;θ(D)) called the generator and the dis-
criminator. The generator learns to sample from the target
distribution by transforming a random input vector z to a
vector x = G(z;θ(G)), and the discriminator learns to dis-
tinguish the model distribution pmodel(x) from pdata(x). The
training procedure for GANs is typically based on applying
gradient descent in turn to the discriminator and the genera-
tor in order to minimize a loss function. Finding a good loss
function is a topic of ongoing research, and several options
were proposed in (Mao et al., 2016; Arjovsky et al., 2017).

One of the main challenges (Lucic et al., 2017; Barratt &

1Skolkovo Institute of Science and Technology 2Institute of Nu-
merical Mathematics RAS. Correspondence to: Valentin Khrulkov
<khrulkov.v@gmail.com>.
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Sharma, 2018) in the GANs framework is estimating the
quality of the generated samples. In traditional GAN models,
the discriminator loss cannot be used as a metric and does
not necessarily decrease during training. In more involved
architectures such as WGAN (Arjovsky et al., 2017) the
discriminator (critic) loss is argued to be in correlation with
the image quality, however, using this loss as a measure of
quality is nontrivial. Training GANs is known to be difficult
in general and presents such issues as mode collapse when
pmodel(x) fails to capture a multimodal nature of pdata(x) and
in extreme cases all the generated samples might be identical.
Several techniques to improve the training procedure were
proposed in (Salimans et al., 2016; Gulrajani et al., 2017).

In this work, we attack the problem of estimating the quality
and diversity of the generated images by using the machin-
ery of topology. The well-known Manifold Hypothesis
(Goodfellow et al., 2016) states that in many cases such
as the case of natural images the support of the distribu-
tion pdata(x) is concentrated on a low dimensional manifold
Mdata in a Euclidean space. This manifold is assumed to
have a very complex non-linear structure and is hard to
define explicitly. It can be argued that interesting features
and patterns of the images from pdata(x) can be analyzed in
terms of topological properties ofMdata, namely in terms
of loops and higher dimensional holes inMdata. Similarly,
we can assume that pmodel(x) is supported on a manifold
Mmodel (under mild conditions on the architecture of the
generator this statement can be made precise (Shao et al.,
2017)), and for sufficiently good GANs this manifold can
be argued to be quite similar to Mdata (see Fig. 1). This
intuitive claim will be later supported by numerical exper-
iments. Based on this hypothesis we develop an approach
which allows for comparing the topology of the underly-
ing manifolds for two point clouds in a stochastic manner
providing us with a visual way to detect mode collapse and
a score which allows for comparing the quality of various
trained models. Informally, since the task of computing the
precise topological properties of the underlying manifolds
based only on samples is ill-posed by nature, we estimate
them using a certain probability distribution (see Section 4).

We test our approach on several real–life datasets and popu-
lar GAN models (DCGAN, WGAN, WGAN-GP) and show
that the obtained results agree well with the intuition and
allow for comparison of various models (see Section 5).

Comparing GAN feature spaces
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Topological Mixture Estimation

Steve Huntsman 1

Abstract

We introduce topological mixture estimation, a
completely nonparametric and computationally
efficient solution to the problem of estimating a
one-dimensional mixture with generic unimodal
components. We repeatedly perturb the unimodal
decomposition of Baryshnikov and Ghrist to pro-
duce a topologically and information-theoretically
optimal unimodal mixture. We also detail a
smoothing process that optimally exploits topo-
logical persistence of the unimodal category in
a natural way when working directly with sam-
ple data. Finally, we illustrate these techniques
through examples.

1. Introduction
1.1. Background

Density functions that represent sample data are often multi-
modal, i.e. they exhibit more than one maximum. Typically
this behavior indicates that the underlying data deserves a
more detailed representation as a mixture of densities with
individually simpler structure. The usual specification of a
component density is quite restrictive, with log-concave the
most general case considered in the literature, and Gaussian
the overwhelmingly typical case. It is also necessary to
determine the number of mixture components a priori, and
much art is devoted to this.

In this paper we detail how to efficiently determine a topo-
logically and information-theoretically optimal mixture of
generic unimodal component densities directly from a one-
dimensional input density and without any auxiliary infor-
mation whatsoever. The topological criterion is a natural
qualitative alternative to more traditional quantitative model
selection criteria (e.g., information criteria) and is computed
at the outset of computation, then subsequently preserved,
while the information-theoretical criterion optimally sepa-

1BAE Systems FAST Labs, Arlington, VA, USA. Correspon-
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rates component densities. We further show how to opti-
mally smooth the mixture when the input density itself is be-
ing estimated. Topological persistence (which operationally
amounts to the assignment of significance to topological
features that persist as a function of scale) is the essential
ingredient in both the “model selection” and smoothing.

1.2. Formal Motivation

To give some formal motivation, letD(Rd) denote a suitable
space of continuous probability densities (henceforth merely
called densities) on Rd. A mixture on Rd with M compo-
nents is a pair (π, p) ∈ ∆◦M × D(Rd)M , where ∆◦M :=
{π ∈ (0, 1]M :

∑
m πm = 1}; we write |(π, p)| := M , and

note that π cannot have any components equal to zero. The
corresponding mixture density is 〈π, p〉 :=

∑M
m=1 πmpm.

The Jensen-Shannon divergence of (π, p) is (Briët & Har-
remoës, 2009)

J(π, p) := H (〈π, p〉)− 〈π,H(p)〉 (1)

where H(p)m := H(pm) and H(f) := −
∫
f log f dx is

the entropy of f .

Now J(π, p) is the mutual information between the random
variables Ξ ∼ π and X ∼ 〈π, p〉. Since mutual information
is always nonnegative, the same is true of J . The concavity
of H gives the same result, i.e. H (〈π, p〉) ≥ 〈π,H(p)〉.
If M := |(π, p)| > 1, π̂ := (π1, . . . , πM−2, πM−1 + πM ),
and p̂ :=

(
p1, . . . , pM−2,

πM−1pM−1+πMpM
πM−1+πM

)
, then is easy

to show that J(π̂, p̂) ≤ J(π, p).

We say that a density f ∈ D(Rd) is unimodal if
f−1([y,∞)) is either empty or contractible (i.e., topolog-
ically equivalent to a point in the sense of homotopy) for
all y. For d = 1, this simply means that any nonempty
sets f−1([y,∞)) are intervals and agrees with intuition. We
call a mixture (π, p) unimodal iff each of the component
densities pm is unimodal. The unimodal category ucat(f)
is the smallest number of components of any unimodal mix-
ture (π, p) that satisfies 〈π, p〉 = f . Figure 1 shows that
the unimodal category can be much less than the number of
maxima. In the event that 〈π, p〉 = f and |(π, p)| = ucat(f),
we write (π, p) |= f : the symbol |= is called “models.” The
unimodal category is a topological invariant that general-
izes and relates to other classical invariants (Baryshnikov &
Ghrist, 2011; Ghrist, 2014).
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Abstract

Algebraic topology methods have recently played an important role for statistical
analysis with complicated geometric structured data such as shapes, linked twist
maps, and material data. Among them, persistent homology is a well-known tool
to extract robust topological features, and outputs as persistence diagrams (PDs).
However, PDs are point multi-sets which can not be used in machine learning
algorithms for vector data. To deal with it, an emerged approach is to use kernel
methods, and an appropriate geometry for PDs is an important factor to measure the
similarity of PDs. A popular geometry for PDs is the Wasserstein metric. However,
Wasserstein distance is not negative definite. Thus, it is limited to build positive
definite kernels upon the Wasserstein distance without approximation. In this work,
we rely upon the alternative Fisher information geometry to propose a positive
definite kernel for PDs without approximation, namely the Persistence Fisher (PF)
kernel. Then, we analyze eigensystem of the integral operator induced by the
proposed kernel for kernel machines. Based on that, we derive generalization error
bounds via covering numbers and Rademacher averages for kernel machines with
the PF kernel. Additionally, we show some nice properties such as stability and
infinite divisibility for the proposed kernel. Furthermore, we also propose a linear
time complexity over the number of points in PDs for an approximation of our
proposed kernel with a bounded error. Throughout experiments with many different
tasks on various benchmark datasets, we illustrate that the PF kernel compares
favorably with other baseline kernels for PDs.

1 Introduction

Using algebraic topology methods for statistical data analysis has been recently received a lot of
attention from machine learning community [Chazal et al., 2015, Kwitt et al., 2015, Bubenik, 2015,
Kusano et al., 2016, Chen and Quadrianto, 2016, Carriere et al., 2017, Hofer et al., 2017, Adams et al.,
2017, Kusano et al., 2018]. Algebraic topology methods can produce a robust descriptor which can
give useful insight when one deals with complicated geometric structured data such as shapes, linked
twist maps, and material data. More specifically, algebraic topology methods are applied in various
research fields such as biology [Kasson et al., 2007, Xia and Wei, 2014, Cang et al., 2015], brain
science [Singh et al., 2008, Lee et al., 2011, Petri et al., 2014], and information science [De Silva
et al., 2007, Carlsson et al., 2008], to name a few.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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A Topological Visual Analysis Approach for Complex Networks
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Fig. 1. All components of our proposed approach, shown for the “Les Misérables” co-occurrence network, which we analyze in
Section 4.1. If the size of the graph permits it, we show a force-directed graph layout of the network (a), where each vertex is colored
according to the maximum degree of their associated clique community. A 2D histogram (b) of the maximum number of individual clique
communities for all edge weights and all clique degrees helps in finding relevant edge weight thresholds. The persistence diagram (c)
gives an overview of all clique communities and their merging behavior. The nested graph (d) shows how individual clique communities
merge when the edge weight of the network increases. Furthermore, it permits tracking the evolution of a single community.

Abstract—Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have
been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the
computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize
and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track
of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new
centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive
visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for
different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

Index Terms—Persistent homology, topological persistence, cliques, complex networks, visual analysis

1 INTRODUCTION

Complex network analysis [35, 42, 47] is an active research topic with
applications in multiple fields of interest, such as sociology, physics,
electrical engineering, biology, and economics. Generally, complex
networks are used to represent different kinds of systems that consist of

• Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte are
with TU Kaiserslautern. E-mail:{rieck, fugacci, lukasczyk,
leitte}@cs.uni-kl.de.

individuals interacting with each other. A local analysis often focuses
on the connections of a single node and its local relevance. Centrality
measures such as betweenness or closeness help identify key nodes. A
study of structural properties of the entire network, by contrast, concen-
trates on groups of nodes and their connections. The connectivity of a
network can be measured using a large variety of attributes and descrip-
tors such as density, cohesion, diameter, and small-worldness. For this
kind of analysis, it is necessary to study communities or clusters [16].
Although a concrete definition depends on the application context, a
community is usually considered to be a highly-connected group of
nodes of the network. All of these concepts augment the description of
the local and the global structure of a network. Moreover, they can be
used to compare different networks. However, despite the effectiveness
of these concepts for evaluating similarities between networks, a tool

for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities
The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks
Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis
Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities
Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Abstract

Persistence diagrams, a key descriptor from Topological Data Analysis, encode
and summarize all sorts of topological features and have already proved pivotal in
many different applications of data science. But persistence diagrams are weakly
structured and therefore constitute a difficult input for most Machine Learning
techniques. To address this concern several vectorization methods have been put
forward that embed persistence diagrams into either finite-dimensional Euclidean
spaces or implicit Hilbert spaces with kernels. But finite-dimensional embeddings
are prone to miss a lot of information about persistence diagrams, while kernel
methods require the full computation of the kernel matrix.
We introduce PersLay: a simple, highly modular layer of learning architecture for
persistence diagrams that allows to exploit the full capacities of neural networks
on topological information from any dataset. This layer encompasses most of the
vectorization methods of the literature. We illustrate its strengths on challenging
classification problems on dynamical systems orbit or real-life graph data, with re-
sults improving or comparable to the state-of-the-art. In order to exploit topological
information from graph data, we show how graph structures can be encoded in the
so-called extended persistence diagrams computed with the heat kernel signatures
of the graphs.

1 Introduction

Topological Data Analysis is a field of data science whose purpose is to capture and encode the
topological features (such as the connected components, loops, cavities...) that are present in datasets
in order to improve inference and prediction. Its main descriptor is the so-called persistence diagram,
which takes the form of a set of points in the Euclidean plane R2, each point corresponding to
a topological feature of the data. This descriptor has been successfully used in many different
applications of data science, such as material science [4], signal analysis [24], cellular data [5], or
shape recognition [22] to name a few. This wide range of applications is mainly due to the fact that
persistence diagrams encode information whose essence is topological, and as such this information
tends to be complementary to the one captured by more classical descriptors.

However, the space of persistence diagrams heavily lacks structure: different persistence diagrams
may have different number of points, and several basic operations are not well-defined, such as
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Deep sets for persistence diagrams

C. Hofer et al., ‘Connectivity‐optimized representa‐
tion learning via persistent homology’

Connectivity-Optimized Representation Learning via Persistent Homology

Christoph D. Hofer 1 Roland Kwitt 1 Mandar Dixit 2 Marc Niethammer 3

Abstract
We study the problem of learning representations
with controllable connectivity properties. This is
beneficial in situations when the imposed struc-
ture can be leveraged upstream. In particular,
we control the connectivity of an autoencoder’s
latent space via a novel type of loss, operating
on information from persistent homology. Un-
der mild conditions, this loss is differentiable and
we present a theoretical analysis of the properties
induced by the loss. We choose one-class learn-
ing as our upstream task and demonstrate that
the imposed structure enables informed parameter
selection for modeling the in-class distribution
via kernel density estimators. Evaluated on com-
puter vision data, these one-class models exhibit
competitive performance and, in a low sample
size regime, outperform other methods by a large
margin. Notably, our results indicate that a sin-
gle autoencoder, trained on auxiliary (unlabeled)
data, yields a mapping into latent space that can
be reused across datasets for one-class learning.

1. Introduction
Much of the success of neural networks in (supervised)
learning problems, e.g., image recognition (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017), object de-
tection (Ren et al., 2015; Liu et al., 2016; Dai et al., 2016), or
natural language processing (Graves, 2013; Sutskever et al.,
2014) can be attributed to their ability to learn task-specific
representations, guided by a suitable loss.

In an unsupervised setting, the notion of a good/useful rep-
resentation is less obvious. Reconstructing inputs from a
(compressed) representation is one important criterion, high-
lighting the relevance of autoencoders (Rumelhart et al.,
1986). Other criterions include robustness, sparsity, or infor-
mativeness for tasks such as clustering or classification.

1Department of Computer Science, University of Salzburg, Aus-
tria 2Microsoft 3UNC Chapel Hill. Correspondence to: Christoph
D. Hofer <chr.dav.hofer@gmail.com>.
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To meet these criteria, the reconstruction objective is typi-
cally supplemented by additional regularizers or cost func-
tions that directly (/indirectly) impose structure on the
latent space. For instance, sparse (Makhzani & Frey,
2014), denoising (Vincent et al., 2010), or contractive (Rifai
et al., 2011) autoencoders aim at robustness of the learned
representations, either through a penalty on the encoder
parametrization, or through training with stochastically per-
turbed data. Additional cost functions guiding the mapping
into latent space are used in the context of clustering, where
several works (Xie et al., 2016; Yang et al., 2017; Zong et al.,
2018) have shown that it is beneficial to jointly train for re-
construction and a clustering objective. This is a prominent
example for representation learning guided towards an up-
stream task. Other incarnations of imposing structure can be
found in generative modeling, e.g., using variational autoen-
coders (Kingma & Welling, 2014). Although, in this case,
autoencoders arise as a model for approximate variational
inference in a latent variable model, the additional optimiza-
tion objective effectively controls distributional aspects of
the latent representations via the Kullback-Leibler diver-
gence. Adversarial autoencoders (Makhzani et al., 2016;
Tolstikhin et al., 2018) equally control the distribution of
the latent representations, but through adversarial training.

Overall, the success of these efforts clearly shows that im-
posing structure on the latent space can be beneficial. In
this work, we focus on one-class learning as the upstream
task. This is a challenging problem, as one needs to uncover
the underlying structure of a single class using only sam-
ples of that class. Autoencoders are a popular backbone
model for many approaches in this area (Zhou & Pfaffen-
roth, 2017; Zong et al., 2018; Sabokrou et al., 2018). By
controlling topological characteristics of the latent repre-
sentations, connectivity in particular, we argue that kernel-
density estimators can be used as effective one-class models.
While earlier works (Pokorny et al., 2012a;b) show that in-
formed guidelines for bandwidth selection can be derived
from studying the topology of a space, our focus is not on
passively analyzing topological properties, but rather on
actively controlling them. Besides work by (Chen et al.,
2019) on topologically-guided regularization of decision
boundaries (in a supervised setting), we are not aware of
any other work along the direction of backpropagating a
learning signal derived from topological analyses.

Topology‐aware training with a new loss

C. Hofer et al., ‘Graph filtration learning’

Graph Filtration Learning

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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Learning filtrations

M. Moor et al., ‘Topological autoencoders’

Topological Autoencoders

Michael Moor∗†
michael.moor@bsse.ethz.ch

Max Horn∗†

max.horn@bsse.ethz.ch

Bastian Rieck∗‡

bastian.rieck@bsse.ethz.ch
Karsten Borgwardt∗‡

karsten.borgwardt@bsse.ethz.ch

Abstract

We propose a novel approach for preserving topological structures of the input
space in latent representations of autoencoders. Using persistent homology, a
technique from topological data analysis, we calculate topological signatures of
both the input and latent space to derive a topological loss term. Under weak
theoretical assumptions, we can construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale connectivity information. We show
that our approach is theoretically well-founded, while exhibiting favourable latent
representations on synthetic manifold data sets. Moreover, on real-world data sets,
introducing our topological loss leads to more meaningful latent representations
while preserving low reconstruction errors.

1 Introduction

While recently topological features, in particular the multi-scale features derived from persistent
homology, have found increasing usage in the machine learning community [8, 25, 27, 43, 46], using
topology directly as a constraint for current deep learning methods remains an unsolved problem.
This is due to the inherently discrete nature of these computations, making backpropagation through
the computation of topological signatures immensely difficult or only possible in certain special
circumstances, such as assuming a fixed connectivity [41] or discretising a space [16].

In this work, we present a novel approach that permits us to obtain gradients during the computation
of topological signatures. This permits employing topological constraints during training of deep
neural networks and to build topology-preserving autoencoders based on the following contributions:

1. We develop a novel topological loss term for autoencoders that helps harmonise the topology
of the data space and the topology of the latent space

2. We prove that our approach is stable on the level of mini-batches, resulting in suitable
approximations of the persistent homology of a data set.

3. We empirically demonstrate that our novel loss term aids in dimensionality reduction by
preserving topological structures in data sets; in particular, the learned latent representations
are useful in that the preservation of topological structures can also aid interpretability.

∗Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
†These authors contributed equally. Author order has been determined by tossing a virtual coin.
‡These authors jointly directed this work.
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Optimising autoencoder representations

K. N. Ramamurthy et al., ‘Topological data analysis
of decision boundaries with application to model
selection’

Topological Data Analysis of Decision Boundaries
with Application to Model Selection

Karthikeyan Natesan Ramamurthy 1 Kush R. Varshney 1 Krishnan Mody 1 2

Abstract
We propose the labeled Čech complex, the plain
labeled Vietoris-Rips complex, and the locally
scaled labeled Vietoris-Rips complex to perform
persistent homology inference of decision bound-
aries in classification tasks. We provide theoreti-
cal conditions and analysis for recovering the ho-
mology of a decision boundary from samples. Our
main objective is quantification of deep neural net-
work complexity to enable matching of datasets
to pre-trained models to facilitate the functioning
of AI marketplaces; we report results for exper-
iments using MNIST, FashionMNIST, and CI-
FAR10.

1. Introduction
In supervised learning, the term model selection usually
refers to the process of using validation data to tune hyper-
parameters. However, we are moving toward a world in
which model selection refers to marketplaces of pre-trained
deep learning models in which customers select from a ven-
dor’s collection of available models, often without the ability
to run validation data through them or being able to change
their hyperparameters. Such a marketplace paradigm is
sensible because deep learning models have the ability to
generalize from one dataset to another (Arpit et al., 2017;
Kawaguchi et al., 2017; Zhang et al., 2016). In the case of
classifier selection, the use of data and decision boundary
complexity measures, such as the critical sample ratio (the
density of data points near the decision boundary), can be a
helpful tool (Arpit et al., 2017; Ho & Basu, 2002).

In this paper, we propose the use of persistent homology
(Edelsbrunner & Harer, 2008), a type of topological data
analysis (TDA) (Carlsson, 2009), to quantify the complexity

1IBM Research, Yorktown Heights, NY, USA 2Courant
Institute, New York University, New York City, NY, USA.
Correspondence to: Karthikeyan Natesan Ramamurthy
<knatesa@us.ibm.com>.
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of neural network decision boundaries. Persistent homology
involves estimating the number of connected components
and the number of holes of various dimensions that are
present in the underlying manifold that data samples come
from. This complexity quantification can serve multiple
purposes, but we focus how it can be used as an aid for
matching vendor pre-trained models to customer data. To
this end, we must extend the standard conception of TDA on
point clouds of unlabeled data, and develop new techniques
to apply TDA to decision boundaries of labeled data.

The prior works we are aware of on TDA of decision bound-
aries include our own earlier work (Varshney & Rama-
murthy, 2015) and Chen et al. (2019). In our prior work
(Varshney & Ramamurthy, 2015), we use persistent ho-
mology to tune hyperparameters of radial basis function
kernels and polynomial kernels. The contributions herein
have greater breadth and theoretical depth as we detail be-
low. Chen et al. (2019) consider the 0−order homology of
level sets of decision boundary function and use it to regu-
larize classifier training. They do not consider higher order
homology groups. A recent preprint also examines TDA of
labeled data (Guss & Salakhutdinov, 2018), but approaches
the problem as standard TDA on separate classes rather than
trying to characterize the topology of the decision boundary.
In Section 2 of the supplementary material (SM), we discuss
how this approach can be fooled by the internal structure
of the classes. There has also been theoretical work using
rank of homology groups, known as Betti numbers, to upper
and lower bound the number of layers and units of a neu-
ral network needed for representing a function (Bianchini
& Scarselli, 2014). That work does not deal with data, as
we do here. Moreover, its bounds are quite loose and not
really usable in practice, similar in their looseness to the
bounds for algebraic varieties (Basu et al., 2005; Milnor,
1964) cited in our prior work (Varshney & Ramamurthy,
2015) for polynomial kernel machines.

The main steps in a persistent homology analysis are as fol-
lows. We treat each data point as a node in a graph, drawing
edges between nearby nodes—where nearby is according
to a scale parameter. We form complexes from the simplices
formed by the nodes and edges, and examine the topology
of the complexes as a function of the scale parameter. The

Topology‐based model selection

B. Rieck et al., ‘Neural Persistence: A complexity
measure for deep neural networks using algebraic
topology’

Published as a conference paper at ICLR 2019

NEURAL PERSISTENCE: A COMPLEXITY MEASURE
FOR DEEP NEURAL NETWORKS USING ALGEBRAIC
TOPOLOGY

Bastian Rieck1,2,†, Matteo Togninalli1,2,†, Christian Bock1,2,†,
Michael Moor1,2, Max Horn1,2, Thomas Gumbsch1,2, Karsten Borwardt1,2
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ABSTRACT

While many approaches to make neural networks more fathomable have been pro-
posed, they are restricted to interrogating the network with input data. Measures
for characterizing and monitoring structural properties, however, have not been
developed. In this work, we propose neural persistence, a complexity measure for
neural network architectures based on topological data analysis on weighted strat-
ified graphs. To demonstrate the usefulness of our approach, we show that neural
persistence reflects best practices developed in the deep learning community such
as dropout and batch normalization. Moreover, we derive a neural persistence-
based stopping criterion that shortens the training process while achieving com-
parable accuracies as early stopping based on validation loss.

1 INTRODUCTION

The practical successes of deep learning in various fields such as image processing (Simonyan &
Zisserman, 2015; He et al., 2016; Hu et al., 2018), biomedicine (Ching et al., 2018; Rajpurkar et al.,
2017; Rajkomar et al., 2018), and language translation (Bahdanau et al., 2015; Sutskever et al.,
2014; Wu et al., 2016) still outpace our theoretical understanding. While hyperparameter adjustment
strategies exist (Bengio, 2012), formal measures for assessing the generalization capabilities of deep
neural networks have yet to be identified (Zhang et al., 2017). Previous approaches for improving
theoretical and practical comprehension focus on interrogating networks with input data. These
methods include i) feature visualization of deep convolutional neural networks (Zeiler & Fergus,
2014; Springenberg et al., 2015), ii) sensitivity and relevance analysis of features (Montavon et al.,
2017), iii) a descriptive analysis of the training process based on information theory (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018; Achille & Soatto, 2018), and
iv) a statistical analysis of interactions of the learned weights (Tsang et al., 2018). Additionally,
Raghu et al. (2017) develop a measure of expressivity of a neural network and use it to explore
the empirical success of batch normalization, as well as for the definition of a new regularization
method. They note that one key challenge remains, namely to provide meaningful insights while
maintaining theoretical generality. This paper presents a method for elucidating neural networks in
light of both aspects.

We develop neural persistence, a novel measure for characterizing neural network structural com-
plexity. In doing so, we adopt a new perspective that integrates both network weights and connectiv-
ity while not relying on interrogating networks through input data. Neural persistence builds on com-
putational techniques from algebraic topology, specifically topological data analysis (TDA), which
was already shown to be beneficial for feature extraction in deep learning (Hofer et al., 2017) and
describing the complexity of GAN sample spaces (Khrulkov & Oseledets, 2018). More precisely,
we rephrase deep networks with fully-connected layers into the language of algebraic topology and
develop a measure for assessing the structural complexity of i) individual layers, and ii) the entire
network. In this work, we present the following contributions:

1

Neural network complexity analysis

B. Rieck et al., ‘A persistent Weisfeiler–Lehman pro‐
cedure for graph classification’

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Topological features for graph classification

Q. Zhao and Y. Wang, ‘Learning metrics for
persistence‐based summaries and applications for
graph classification’

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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An optimised weight function for persistence images
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Three challenges for the future

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



We need to reduce the computational burden

Image credit: Prof. A. T. Fomenko

One issuewith the calculation is that, given the com‐
putational complexity of calculatingRϵ(·), we scale
progressively worse with increasing batch size. In fu‐
ture work this could be mitigated by approximating
the calculation of persistent homology or by exploit‐
ing recent advances in parallelising it.

M. Moor et al., ‘Topological autoencoders’

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



We need to escape from Flatland

Image credit: Prof. A. T. Fomenko

While it would be theoretically possible to include
higher‐dimensional information about each layerGk,
[…], we focus on zero‐dimensional information in this
paper, because of the following advantages: i) the
resulting values are easily interpretable […], ii) previ‐
ous research indicates that zero‐dimensional topolo‐
gical information is already capturing a large amount
of information, and iii) persistent homology calcula‐
tions are highly efficient in this regime […].

B. Rieck et al., ‘Neural Persistence: A complexity measure for
deep neural networks using algebraic topology’

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



We need proper architectures

Image credit: Prof. A. T. Fomenko

So far, however, persistent homology is used in a
passive manner, meaning that the function f map‐
ping simplices toR is fixed and not informed by the
learning task. Essentially, this degrades persistent
homology to feature extraction step, where the ob‐
tained topological summaries are fed through a suit‐
able vectorization scheme and passed to a classifier.

C. Hofer et al., ‘Graph filtration learning’
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Building intuition
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Pick suitable application domains

Graph classification Feature space analysis Time series classification

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



Graph classification
Some impulses
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Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do

Preprint. Under review.
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Filtration learning

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Subtree features

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗ Yusu Wang∗

Abstract

Recently a new feature representation and data analysis methodology based on a topological tool
called persistent homology (and its corresponding persistence diagram summary) has started to attract
momentum.

A series of methods have been developed to map a persistence diagram to a vector representation so
as to facilitate the downstream use of machine learning tools, and in these approaches, the importance
(weight) of different persistence features are often pre-set. However often in practice, the choice of
the weight-function should depend on the nature of the specific type of data one considers, and it is
thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence
summaries, as well as an optimization framework to learn a good metric for persistence summaries.
Both our kernel and optimization problem have nice properties. We further apply the learned kernel
to the challenging task of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results from a range of previous
graph classification frameworks on a collection of benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology
has started to attract momentum in the learning community. The persistent homology is one of the most
important developments in the field of topological data analysis in the past two decades, and there have
been fundamental development both on the theoretical front (e.g, [7, 9, 11, 12, 20]), and on algorithms /
efficient implementations (e.g, [3, 4, 13, 17, 26, 38]). On the high level, given a domain X with a function
f : X → R defined on it, the persistent homology provides a way to summarize “features” of X across
multiple scales simultaneously in a single summary called the persistence diagram (see the lower left picture
in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point p = (b, d)
intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) feature of X w.r.t. f .
Hence it provides a concise representation of X , capturing multi-scale features of it in a concise manner.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (see
Figure 1) has recently attracted much attention. Specifically, given a collection of objects, say a set of graphs
modeling chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a certain persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks, such as
clustering or classification.

∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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Weight functions
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Pick suitable application domains

Graph classification Feature space analysis Time series classification
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Pick suitable application domains

Graph classification Feature space analysis Time series classification

• V. Khrulkov and I. Oseledets, ‘Geometry score: A method for comparing generative adversarial networks’
• M. Moor et al., ‘Topological autoencoders’
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Pick suitable application domains

Graph classification Feature space analysis Time series classification

J. A. Perea et al., ‘SW1PerS: Sliding windows and 1‐persistence scoring; discovering periodicity in gene expression
time series data’
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What to avoid

Round about the cauldron go;
In the persistent entrails throw.
Diagram that with many a pair
Makes the network look less bare.

Double, double toil and trouble;
Fire burn and cauldron bubble.

Persistent homology should not become another ‘ingredient’ in our networks that
we do not understand.
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How to write successful papers in topological machine learning

Choose suitable comparison partners. Do not restrict yourself to
TDA‐based techniques but choose the best techniques you can
find (including TDA baselines).

Good example: Q. Zhao and Y. Wang, ‘Learning metrics for persistence‐based summaries
and applications for graph classification’
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How to write successful papers in topological machine learning

Show the benefits of persistent homology or TDA. Why TDA and
not something else?

Good example: V. Khrulkov and I. Oseledets, ‘Geometry score: A method for comparing
generative adversarial networks’
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How to write successful papers in topological machine learning

Explain TDA. What is the meaning of topological features for a
particular data set?

Good example: B. Rieck et al., ‘A persistent Weisfeiler–Lehman procedure for graph
classification’
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Our tasks

Perspectives in Persistent Homology Bastian Rieck 16 September 2019



Standards

We need to harmonise and standardise our methods to encourage
sharing and the creation of frameworks.
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Benchmark data sets

We need benchmark data sets against which we can test all our
methods; plus, benchmarks help us present compelling examples.
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Conclusion

Many interesting challenges lie ahead! If you want to help, I would
love to hear from you:

 bastian.rieck.me
 bastian.rieck@bsse.ethz.ch
, Pseudomanifold

Thank you very much for your attention!
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