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What is topology?

Studying the abstract shape of objects
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What is a manifold?

Informal definition

An object (or a space) that locally looks like some d-dimensional Euclidean space, i.e. we have d
independent coordinates to describe our position.
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Data analysis

Manifold hypothesis

Given a data set in R?, we assume that it can be adequately described by a manifold .# <
R¥ (or multiple ones), with d < D.

Questions

@ How to distinguish between manifolds?

® How to classify manifolds?
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A simple taxonomy

Betti numbers: counting d-dimensional holes

Bo=1p =1
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A simple taxonomy

Betti numbers: counting d-dimensional holes
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Reality: No manifolds, but samples of manifolds
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Topological data analysis

Betti numbers at multiple scales

Assess multi-scale connectivity of point clouds by calculating different distance thresholds and
tracking changes.

Y, = {{x, x5, ...} | dist(xi,x]-] <eforalli # j}
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Topological data analysis

Betti numbers at multiple scales

Assess multi-scale connectivity of point clouds by calculating different distance thresholds and
tracking changes.
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Persistent homology

Homology

Homology refers to a generic way of associating a sequence of algebraic objects, such
as (Abelian) groups to other objects, such as topological spaces.

Persistent homology

Persistent homology refers to an extension of homology to analyse real-world data sets (point
clouds, images, functions, ...) at multiple scales. Information about topological features is
stored in persistence diagrams.
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A real-world example

Analysing a function f over R
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Another real-world example

Analysing the distance function of point clouds in R?
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Applications

J. M. Chan, G. Carlsson and R. Rabadan, Topology of viral evolution, Proceedings of the National Academy of Sciences of the
United States of America (PNAS) 110.46, 2013, pp. 18566-18571

Topology of viral evolution

® Assess evolutionary behaviour of viruses

Particularly interested in reticulate evolution

Perform analysis based on genomic sequences

Horizontal evolution results in non-trivial 1D topology
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J. M. Chan, G. Carlsson and R. Rabadan, Topology of viral evolution, Proceedings of the National Academy of Sciences of the
United States of America (PNAS) 110.46, 2013, pp. 18566-18571

Topology of viral evolution

® Assess evolutionary behaviour of viruses

Particularly interested in reticulate evolution

Perform analysis based on genomic sequences

Horizontal evolution results in non-trivial 1D topology

(Numerous other applications in machine learning, known collectively as fopological machine learning or topological
deep learning.)
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How to integrate persistent homology into deep learning?

Obstacle

Persistent homology is fundamentally discrete, but deep learning requires differentiable
objective functions.

Solution

Persistent homology only depends on the distances between points. If these distances are
assumed to be unique, we can obtain (local) differentiability.
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How to integrate persistent homology into deep learning?

Obstacle

Persistent homology is fundamentally discrete, but deep learning requires differentiable
objective functions.

Solution

Persistent homology only depends on the distances between points. If these distances are
assumed to be unique, we can obtain (local) differentiability.

® A. Poulenard, P. Skraba and M. Ovsjanikov, Topological Function Optimization for Continuous Shape
Matching, Computer Graphics Forum 37.5, 2018, pp. 13-25

® M. Carriere, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda, Optimizing persistent homology based
functions, Proceedings of the 38th International Conference on Machine Learning (ICML), 2021,
pp. 1294-1303
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Persistent homology

Gradient calculation sketch

Distance matrix A

0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0

Every point in the persistence diagram can be mapped to one entry in the distance matrix! Each
entry is a distance, so it can be changed during tfraining.
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Persistent homology

Gradient calculation sketch
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Topological autoencoders

M. Moor*, M. Horn*, B. Rieck™ and K. Borgwardt', Topological Autoencoders, Proceedings of the 37th International Conference
on Machine Learning (ICML), ed. by H. D. Il and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020,
pp. 7045-7054, arXiv: 1906 .00722 [cs.LG]

® Dimensionality reduction techniques need characteristic information about the underlying
manifold .4 in order to produce faithful embeddings.
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Topological autoencoders

M. Moor*, M. Horn*, B. Rieck™ and K. Borgwardt', Topological Autoencoders, Proceedings of the 37th International Conference
on Machine Learning (ICML), ed. by H. D. Il and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020,
pp. 7045-7054, arXiv: 1906 .00722 [cs.LG]

® Dimensionality reduction techniques need characteristic information about the underlying
manifold .4 in order to produce faithful embeddings.

® Existing techniques do not take multi-scale geometrical-topological structures into account.

® We describe a general geometrical-topological loss term for regularising machine-learning
models, including ‘shallow’ models like PCA.
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Topological autoencoders

Manifold-learning and dimensionality-reduction techniques are somewhat controversial...
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Topological autoencoders

Manifold-learning and dimensionality-reduction techniques are somewhat controversial...

Lior Pachter &

Kind of sucks when you've been telling people publicly that they should

labandon UMAPs because they can be misleading and don't provide a
aithful representation of the data... and then you look at a UMAP and it's|
really useful. 1/3
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Topological autoencoders

Manifold-learning and dimensionality-reduction techniques are somewhat controversial...

Lior Pachter @
Kind of suck
abandon L

Well, that hasn't happened to me. This particular UMAP is one |
from random data. The EleColab notebook that generateditis

Scanpy on a random dataset
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Topological autoencoders

Loss term
Ly =Ly . 7+L7 .o

Loz = 5|A*[x*] - AZ[¥]? L7g = 3| A [n”] - A¥[27]|"
® %' input space
® Z: latent space
e AX: distances in input mini-batch
e AZ: distances in latent mini-batch
e 7% persistence pairing of input mini-batch

® 7Z: persistence pairing of latent mini-batch

The loss is bi-directional!
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Topological autoencoders

Schematic overview

X

X

Reconstruction

Input data

Reconstruction loss

Topological loss
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Results in practice

Qualitative evaluation
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Results in practice

Zooming in...

Topological autoencoder

Autoencoder
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Quantitative evaluation

® Surprisingly hard to do properly, because there are so many quality measures for
dimensionality reduction.
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Quantitative evaluation

Bastian Rieck

Surprisingly hard to do properly, because there are so many quality measures for
dimensionality reduction.
According to most measures, the loss term has no detrimental effects!

Tangent: This prompted the development of new measures!

L. O’Bray*, M. Horn*, B. Rieck® and K. Borgwardt', Evaluation Metrics for Graph Generative Models:
Problems, Pitfalls, and Practical Solutions, International Conference on Learning Representations, 2022, arXiv:
2106.01098 [cs.LG]

K. Limbeck, R. Andreeva, R. Sarkar and B. Rieck, Metric Space Magnitude for Evaluating the Diversity of
Latent Representations, Advances in Neural Information Processing Systems, vol. 37, Curran Associates, Inc.,
2024, arXiv: 2311.16054 [cs.LG], in press
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Conclusion

® Geometrical-topological regularisations are beneficial in numerous applications:
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® Future work: Improve scalability to simplify the integration into modern machine-learning
techniques and offer more flexibility for preserving certain properties.
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