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What is topology?
Studying the abstract shape of objects
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What is a manifold?
Informal definition

An object (or a space) that locally looks like some 𝑑-dimensional Euclidean space, i.e. we have 𝑑
independent coordinates to describe our position.

𝑑 = 1 𝑑 = 2 𝑑 = 2
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Data analysis

Manifold hypothesis

Given a data set inR𝐷, we assume that it can be adequately described by a manifoldℳ ⊂
R𝑑 (or multiple ones), with 𝑑 ll 𝐷.

Questions

1 How to distinguish between manifolds?

2 How to classifymanifolds?

Bastian Rieck Good Gradients & How To Find Them 3/20



A simple taxonomy
Betti numbers: counting 𝑑-dimensional holes

𝛽0 = 1, 𝛽1 = 1
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Reality: No manifolds, but samples of manifolds
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Topological data analysis
Betti numbers atmultiple scales

Assess multi-scale connectivity of point clouds by calculating different distance thresholds and
tracking changes.

𝔙𝜖 ∶= {{𝑥1, 𝑥2,…} ∣ dist(𝑥𝑖, 𝑥𝑗) ≤ 𝜖 for all 𝑖 ≠ 𝑗}
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Persistent homology

Homology

Homology refers to a generic way of associating a sequence of algebraic objects, such
as (Abelian) groups to other objects, such as topological spaces.

Persistent homology

Persistent homology refers to an extension of homology to analyse real-world data sets (point
clouds, images, functions, …) at multiple scales. Information about topological features is
stored in persistence diagrams.
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A real-world example
Analysing a function 𝑓 overR
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Another real-world example
Analysing the distance function of point clouds inR3
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Applications
J. M. Chan, G. Carlsson and R. Rabadan, Topology of viral evolution, Proceedings of the National Academy of Sciences of the
United States of America (PNAS) 110.46, 2013, pp. 18566–18571

Topology of viral evolution
Joseph Minhow Chana,b, Gunnar Carlssonc, and Raul Rabadana,b,d,1

aCenter for Computational Biology and Bioinformatics and Departments of bBiomedical Informatics and dSystems Biology, Columbia University College of
Physicians and Surgeons, New York, NY 10032; and cDepartment of Mathematics, Stanford University, Stanford, CA 94305

Edited* by Arnold J. Levine, Institute for Advanced Study, Princeton, NJ, and approved October 11, 2013 (received for review July 18, 2013)

The tree structure is currently the accepted paradigm to represent
evolutionary relationships between organisms, species or other
taxa. However, horizontal, or reticulate, genomic exchanges are
pervasive in nature and confound characterization of phylogenetic
trees. Drawing from algebraic topology, we present a unique evo-
lutionary framework that comprehensively captures both clonal
and reticulate evolution. We show that whereas clonal evolution
can be summarized as a tree, reticulate evolution exhibits nontrivial
topology of dimension greater than zero. Our method effectively
characterizes clonal evolution, reassortment, and recombination in
RNA viruses. Beyond detecting reticulate evolution, we succinctly
recapitulate the history of complex genetic exchanges involving
more than two parental strains, such as the triple reassortment of
H7N9 avian influenza and the formation of circulating HIV-1 re-
combinants. In addition, we identify recurrent, large-scale patterns
of reticulate evolution, including frequent PB2-PB1-PA-NP cosegre-
gation during avian influenza reassortment. Finally, we bound the
rate of reticulate events (i.e., 20 reassortments per year in avian in-
fluenza). Our method provides an evolutionary perspective that
not only captures reticulate events precluding phylogeny, but also
indicates the evolutionary scales where phylogenetic inference
could be accurate.

persistent homology | gene flow | topological data analysis

In On the Origin of the Species in 1859, Darwin first proposed the
phylogenetic tree as a structure to describe the evolution of

phenotypic attributes. Since then, the advancement of modern
sequencing has spurred development of a number of phyloge-
netic inference methods (1, 2). The tree structure effectively
models vertical or clonal evolution, mediated by random muta-
tions over multiple generations (Fig. 1A). Phylogenetic trees,
however, cannot capture horizontal, or reticulate, events, which
occur when distinct clades merge together to form a new hybrid
lineage (Fig. 1B and SI Appendix, Fig. S1). In nature, horizontal
evolution can occur through species hybridization in eukaryotes,
lateral gene transfer in bacteria, recombination and reassortment
in viruses, viral integration in eukaryotes, and fusion of genomes
of symbiotic species (e.g., mitochondria). These horizontal ge-
netic exchanges create incompatibilities that mischaracterize the
species tree (3). Doolittle (4) argued that molecular phyloge-
neticists have failed to identify the “true tree of life” because the
history of living organisms cannot be understood as a tree. One
may wonder what other mathematical structures beyond phy-
logeny can capture the richness of evolutionary processes.
Current techniques that detect reticulate events can be divided

into phylogenetic and nonphylogenetic methodologies. Phylo-
genetic methods detect incongruence in the tree structure of
different segments (5–8). Nonphylogenetic methods probe for
homoplasies (shared character traits independently arising in
different lineages by convergent or parallel evolution) or similar
inconsistencies in sequence alignment (9–13). Although many of
these methods are designed for sensitive detection of viral re-
combination and bacterial lateral gene transfer, they do not pro-
vide comprehensive representation of the evolutionary process.
Perhaps phylogenetic networks exemplify the largest de-

parture from trees, allowing multiple paths between any two
leaves. These methods visualize incompatibilities of sequence
patterns or tree topologies as reticulation cycles in a network

(14–16). Only the subfield of evolutionary networks is amenable
to reticulate detection. However, major stumbling blocks abound
for such methods. Although phylogenetic network structure is
not necessarily unique, all current implementations produce only
one network that may represent a suboptimal solution; results
may depend on factors as arbitrary as the ordering of samples in
the data matrix (16, 17). Moreover, many methods have imprac-
tical running times for even small datasets owing to the nondeter-
ministic polynomial-time hard (NP-hard) problem of determining
whether a tree exists in an evolutionary network (18). To address
these obstacles, ad hoc methods simplify the search space of net-
work structures: k-level, galled, tree-child, and tree-sibling networks.
Although some of these methods cease to be NP-hard (19), all
prioritize computational tractability over biological modeling
(20). For example, galled tree networks minimize the number of
inferred recombinations by ensuring that reticulation cycles share
no nodes (21). This heuristic is appropriate only for low recom-
bination rates and is not universally applicable.
Here, we propose a comprehensive and fast method of

extracting large-scale patterns from genomic data that captures
both vertical and horizontal evolutionary events at the same
time. The structure we propose is not a tree or a network, but
a set of higher-dimensional objects with well-defined topological
properties. Using the branch of algebraic topology called per-
sistent homology (throughout this paper, we refer to mathemat-
ical homology, not the notion of genetic or structural similarity),
we extract robust global features from these high-dimensional
complexes. Unlike phylogenetic methods that produce a single,
possibly suboptimal, tree or network, persistent homology con-
siders all topologies and their relationships across the entire pa-
rameter space of genetic distance. Through analysis of viral and
simulated genomic datasets, we show how persistent homology
captures fundamental evolutionary aspects not directly inferred

Significance

Evolution is mediated not only by random mutations over a
number of generations (vertical evolution), but also through
the mixture of genomic material between individuals of dif-
ferent lineages (horizontal evolution). The standard evolution-
ary representation, the phylogenetic tree, faithfully represents
the former but not the latter scenario. Although many elabo-
rations have been developed to address this issue, there is still
no agreed-upon method of incorporating both vertical and
horizontal evolution. Here, we present an alternative strategy
based on algebraic topology to study evolution. This method
extends beyond the limits of a tree to capture directly even
complex horizontal exchanges between multiple parental strains,
as well as uncover broader reticulate patterns, including the
segregation of segments during reassortment.

Author contributions: J.M.C., and R.R. designed research; J.M.C. performed research; G.C.
and R.R. contributed analytic tools; J.M.C. and R.R. analyzed data; and J.M.C., G.C., and
R.R. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: rabadan@dbmi.columbia.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1313480110/-/DCSupplemental.

18566–18571 | PNAS | November 12, 2013 | vol. 110 | no. 46 www.pnas.org/cgi/doi/10.1073/pnas.1313480110
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• Assess evolutionary behaviour of viruses
• Particularly interested in reticulate evolution
• Perform analysis based on genomic sequences
• Horizontal evolution results in non-trivial 1D topology

(Numerous other applications in machine learning, known collectively as topological machine learning or topological
deep learning.)
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How to integrate persistent homology into deep learning?

Obstacle

Persistent homology is fundamentally discrete, but deep learning requires differentiable
objective functions.

Solution

Persistent homology only depends on the distances between points. If these distances are
assumed to be unique, we can obtain (local) differentiability.

• A. Poulenard, P. Skraba and M. Ovsjanikov, Topological Function Optimization for Continuous Shape
Matching, Computer Graphics Forum 37.5, 2018, pp. 13–25

• M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan and Y. Umeda,Optimizing persistent homology based
functions, Proceedings of the 38th International Conference on Machine Learning (ICML), 2021,
pp. 1294–1303
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Persistent homology
Gradient calculation sketch

Distance matrix A

⎡
⎢⎢⎢
⎣

0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0

⎤
⎥⎥⎥
⎦

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

𝜖

𝜖

Every point in the persistence diagram can be mapped to one entry in the distance matrix! Each
entry is a distance, so it can be changed during training.
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Topological autoencoders
M. Moor∗, M. Horn∗, B. Rieck† and K. Borgwardt†, Topological Autoencoders, Proceedings of the 37th International Conference
on Machine Learning (ICML), ed. by H. D. III and A. Singh, Proceedings of Machine Learning Research 119, PMLR, 2020,
pp. 7045–7054, arXiv: 1906.00722 [cs.LG]

• Dimensionality reduction techniques need characteristic information about the underlying
manifoldℳ in order to produce faithful embeddings.

• Existing techniques do not take multi-scale geometrical-topological structures into account.
• We describe a general geometrical-topological loss term for regularising machine-learning
models, including ‘shallow’ models like PCA.
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Topological autoencoders
Manifold-learning and dimensionality-reduction techniques are somewhat controversial…
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Topological autoencoders
Loss term

ℒ𝑡 ∶= ℒ𝒳→𝒵 +ℒ𝒵→𝒳

ℒ𝒳→𝒵 ∶= 1
2‖A

𝑋[𝜋𝑋] − A𝑍[𝜋𝑋]‖2 ℒ𝒵→𝒳 ∶= 1
2‖A

𝑍[𝜋𝑍] − A𝑋[𝜋𝑍]‖2

• 𝒳: input space
• 𝒵: latent space
• A𝑋: distances in input mini-batch
• A𝑍: distances in latent mini-batch
• 𝜋𝑋: persistence pairing of input mini-batch
• 𝜋𝑍: persistence pairing of latent mini-batch

The loss is bi-directional!
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Topological autoencoders
Schematic overview

𝑍
Latent code

𝑋
Input data

�̃�
Reconstruction

Reconstruction loss

𝜖

𝜖

𝜖

𝜖
Topological loss
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Results in practice
Qualitative evaluation

PCA UMAP t-SNE Autoencoder TopoAE
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Results in practice
Zooming in…

Autoencoder Topological autoencoder
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Quantitative evaluation

• Surprisingly hard to do properly, because there are so many quality measures for
dimensionality reduction.

• According to most measures, the loss term has no detrimental effects!
• Tangent: This prompted the development of new measures!

• L. O’Bray∗, M. Horn∗, B. Rieck† and K. Borgwardt†, Evaluation Metrics for Graph Generative Models:
Problems, Pitfalls, and Practical Solutions, International Conference on Learning Representations, 2022, arXiv:
2106.01098 [cs.LG]

• K. Limbeck, R. Andreeva, R. Sarkar and B. Rieck,Metric Space Magnitude for Evaluating the Diversity of
Latent Representations, Advances in Neural Information Processing Systems, vol. 37, Curran Associates, Inc.,
2024, arXiv: 2311.16054 [cs.LG], in press
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Conclusion

• Geometrical-topological regularisations are beneficial in numerous applications:

• Graph classification: M. Horn∗, E. De Brouwer∗, M. Moor, Y. Moreau, B. Rieck† and K. Borgwardt†,
Topological Graph Neural Networks, ICLR, 2022, arXiv: 2102.07835 [cs.LG]

• Shape reconstruction: D. J. E. Waibel, S. Atwell, M. Meier, C. Marr and B. Rieck, Capturing Shape
Information with Multi-Scale Topological Loss Terms for 3D Reconstruction, MICCAI, 2022,
pp. 150–159, arXiv: 2203.01703 [cs.CV]

• Simplicial complex classification: E. Röell and B. Rieck, Differentiable Euler Characteristic
Transforms for Shape Classification, ICLR, 2024, arXiv: 2310.07630 [cs.LG]

• Future work: Improve scalability to simplify the integration into modern machine-learning
techniques and offer more flexibility for preserving certain properties.

Our research
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