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Graphs are ubiquitous…

In many ways, graphs are the main modality of data we receive from nature. This is
due to the fact that most of the patterns we see, both in natural and artificial systems, are
elegantly representable using the language of graph structures. Prominent examples include
molecules (represented as graphs of atoms and bonds), social networks and transportation
networks.

P. Veličković, ‘Everything is connected: Graph neural networks’, Current Opinion in Structural
Biology 79, 2023, p. 102538

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 2/28

https://twitter.com/Pseudomanifold


…but graph neural networks are not always up to the task

While GNNs have the ability to ignore the graph-structure in such cases, it is not clear
that they will. In this work, we show that GNNs actually tend to overfit the graph-structure
in the sense that they use it even when a better solution can be obtained by ignoring it.

M. Bechler-Speicher, I. Amos, R. Gilad-Bachrach and A. Globerson, ‘Graph Neural
Networks Use GraphsWhenThey Shouldn’t’, Preprint, 2023, arXiv: 2309.04332 [cs.LG]
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This talk

Rather than ask about computational mechanisms, think about novel descriptors about
graphs.

Use concepts from geometry and topology to harness more information from graphs.
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Geometry: Ollivier–Ricci Curvature



What is curvature?

Motivation

Characterise how ‘curved’ an object (a surface, a manifold, a topological space, …) is.
Curvature can be extrinsic or intrinsic.

Gaussian curvature

Gaussian curvatureK is the product of the principal curvatures κ1, κ2. It is an intrinsic
property of a surface and does not depend on a specific embedding.

K < 0 K = 0 K > 0
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Ollivier–Ricci curvature

LetG be a graph with its shortest-path metric d and µv be a probability measure on G
for node v ∈ V . TheOllivier–Ricci curvature of a pair of nodes i 6= j ∈ V is then defined
as

κOR(i, j) := 1− W1(µi, µj)

d(i, j)
, (1)

whereW1 refers to the firstWasserstein distance between µi and µj.

History

First introduced by Ollivier for metric (measure) spaces, this notion of curvature was
quickly adopted for use in the graph setting.

Y. Ollivier, ‘Ricci curvature of Markov chains onmetric spaces’, Journal of Functional Analysis
256.3, 2009, pp. 810–864
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How to pickµi?

It is common practice to define a version of µi based on lazy random walks. Given a
laziness parameter α ∈ [0, 1], we set

µi(j) :=


α if i = j
1−α
deg(i) if i 6= j and i ∼ j

0 otherwise

, (2)

where deg(i) refers to the degree of node i.
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Ollivier–Ricci curvature
Different regimes

κOR < 0 κOR = 0 κOR > 0

(figure inspired by K. Devriendt and R. Lambiotte, ‘Discrete curvature on graphs from the effective
resistance’, Journal of Physics: Complexity 3.2, 2022, p. 025008)
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Ollivier–Ricci curvature
Examples

α = 0 α = 0.5 α = 1

−2 −1 0 1
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Useful properties of κOR

Lower bound

It is sufficient to know the values of κOR for each edge (i, j). If κOR(i, j) ≥ K for edges
(i, j) ∈ E, then κOR(k, l) ≥ K for all pairs of vertices (k, l).

Curvature characterises graphs

If κOR(i, j) ≥ K > 0 for all edges (i, j) ∈ E, then for i, j ∈ V , we have

d(i, j) ≤ W1(δi, µi) +W1(δj , µj)

κOR(i, j)
, (3)

where δi, δj refer to Dirac probability measures centred at node i and j. Thus,

diam(G) ≤ supiW1(δi, µi)

K
. (4)
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How to leverage this in practice theory?

Success rate (↑) of distinguishing pairs of graphs in the ‘BREC’ data set when using different
probability measures in the OR curvature calculation.

Method Basic (56) Regular (50) STR (50) Extension (97) CFI (97)

1-WL 0.00 0.00 0.00 0.00 0.00
3-WL 1.00 1.00 0.00 1.00 0.59

κOR

µ
(1)
i 1.00 0.96 0.06 0.87 0.00

µ
(2)
i 1.00 1.00 0.14 0.97 0.01

µ
(3)
i 1.00 1.00 0.14 0.99 0.04

µ
(4)
i 1.00 1.00 0.14 1.00 0.09

µ
(5)
i 1.00 1.00 0.14 1.00 0.19

Ollivier–Ricci curvature with learnable probability measures promises to lead to struc-
tural insights.
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How to leverage this in practice?

Use curvature to evaluate graph generative models.
J. Southern∗, J. Wayland∗, M. Bronstein and B. Rieck, ‘Curvature Filtrations for Graph Generative Model Evaluation’,
Advances in Neural Information Processing Systems (NeurIPS), vol. 36, 2023, arXiv: 2301.12906 [cs.LG], in press

Use curvature as an efficient graph descriptor for graph learning tasks.
L. O’Bray∗,B.Rieck∗ and K. Borgwardt, ‘Filtration Curves for Graph Representation’, Proceedings of the 27th ACMSIGKDD
International Conference on Knowledge Discovery &DataMining (KDD), 2021, pp. 1267–1275
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Topology: Multi-Scale Views on a Graph



Why topology?

Smooth Manifolds

Topological Manifolds

Topological Spaces

Sets

Most of machine learning happens at the level of smooth manifolds. A topological
perspective ismore general but also coarser.
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Topological features of graphs

A graph

The Betti numbers of a graph are easy to calculate but only provide coarse information.
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Topological features of graphs

β0: Connected components

The Betti numbers of a graph are easy to calculate but only provide coarse information.
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Topological features of graphs

β1: Cycles

The Betti numbers of a graph are easy to calculate but only provide coarse information.
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Persistent homology
Intuition
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Use a graph filtration to observe how topological features of the graph change.
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More on filtrations

f−1((−∞, 0]) f−1((−∞, 1]) f−1((−∞, 2]) f−1((−∞, 3])

Filtrations can be learned and incorporate additional geometrical information about a
space.
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Why is this important?

Escaping theWeisfeiler–Le(h)man hierarchy

Persistent homology is at least as expressive asWL[1], the 1-dimensional
Weisfeiler–Le(h)man test for graph isomorphism.
If information about k-cliques is available, persistent homology is at least as
expressive as k-FWL, the ‘folklore’ variant ofWeisfeiler–Le(h)man.

B. Rieck, ‘On the Expressivity of Persistent Homology in Graph Learning’, Preprint, 2023,
arXiv: 2302.09826 [cs.LG]
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Circumventingmessage passing by using pre-defined filtrations

D&D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32 ± 0.35 85.96 ± 0.27 64.40 ± 0.07 63.25 ± 0.12 72.33 ± 0.32 58.31 ± 0.27 68.13 ± 0.23 66.96 ± 0.51 57.91 ± 0.83
E-Hist 72.90 ± 0.48 85.69 ± 0.46 63.66 ± 0.11 63.27 ± 0.07 72.14 ± 0.39 55.82 ± 0.00 65.53 ± 0.00 61.61 ± 0.00 59.03 ± 0.00

RetGK∗ 81.60 ± 0.30 90.30 ± 1.10 84.50 ± 0.20 75.80 ± 0.60 62.15 ± 1.60 67.80 ± 1.10 67.90 ± 1.40 63.90 ± 1.30

WL 79.45 ± 0.38 87.26 ± 1.42 85.58 ± 0.15 84.85 ± 0.19 76.11 ± 0.64 63.12 ± 1.44 67.64 ± 0.74 67.28 ± 0.97 64.80 ± 0.85
Deep-WL∗ 82.94 ± 2.68 80.31 ± 0.46 80.32 ± 0.33 75.68 ± 0.54 60.08 ± 2.55

P-WL 79.34 ± 0.46 86.10 ± 1.37 85.34 ± 0.14 84.78 ± 0.15 75.31 ± 0.73 63.07 ± 1.68 67.30 ± 1.50 68.40 ± 1.17 64.47 ± 1.84
P-WL-C 78.66 ± 0.32 90.51 ± 1.34 85.46 ± 0.16 84.96 ± 0.34 75.27 ± 0.38 64.02 ± 0.82 67.15 ± 1.09 68.57 ± 1.76 65.78 ± 1.22
P-WL-UC 78.50 ± 0.41 85.17 ± 0.29 85.62 ± 0.27 85.11 ± 0.30 75.86 ± 0.78 63.46 ± 1.58 67.02 ± 1.29 68.01 ± 1.04 65.44 ± 1.18

This procedure imbues the Weisfeiler–Le(h)man kernel with additional information
about the topology of a graph.
B. Rieck∗, C. Bock∗ and K. Borgwardt, ‘A Persistent Weisfeiler–Lehman Procedure for Graph Classification’, Proceedings
of the 36th International Conference onMachine Learning (ICML), 2019, pp. 5448–5458
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Augmentingmessage passingwith a topology-based layer

Method DD ENZYMES MNIST PROTEINS

GCN-4 68.0 ± 3.6 22.0 ± 3.3 76.2 ± 0.5 68.8 ± 2.8
GCN-3-TOGL-1 75.1 ± 2.1 30.3 ± 6.5 84.8 ± 0.4 73.8 ± 4.3

GIN-4 75.6 ± 2.8 21.3 ± 6.5 83.4 ± 0.9 74.6 ± 3.1
GIN-3-TOGL-1 76.2 ± 2.4 23.7 ± 6.9 84.4 ± 1.1 73.9 ± 4.9

GAT-4 63.3 ± 3.7 21.7 ± 2.9 63.2 ± 9.4 67.5 ± 2.6
GAT-3-TOGL-1 75.7 ± 2.1 23.5 ± 6.1 77.2 ± 9.5 72.4 ± 4.6

TheGNN part has been disabled by using only random node features. Performance is
thus entirely driven by topological structures.
M.Horn∗, E. De Brouwer∗, M. Moor, Y. Moreau, B. Rieck† and K. Borgwardt†, ‘Topological Graph Neural Networks’,
International Conference on Learning Representations (ICLR), 2022, arXiv: 2102.07835 [cs.LG]
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Geometry & Topology: Differential k Forms



Taking stock

Status quo

Representation learning =mapping things intoRd

Themaps are learnable
Message passing is but one way of doing things

Canwe establish bridges between geometry and topology?

Cohomology studies maps from objects toR.
Can we learn suchmaps?
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Language

Topologists think in terms of complexes, such as simplicial complexes.

A simplicial complex generalises a graph.
A goodmental model is a graph together with its cliques.
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Some heavy lifting

Topology

A singular chain is a function σi : ∆k → Rd, assigning a vector to the standard
simplex.

Singular cochains are linear functionals overCsing
k (Rd,R) := {

∑
i λiσi | λi ∈ R},

the set of all singular chains.

Machine learning

Singular cochains play the role of feature maps for simplices.
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Where’s geometry?

Differential k-forms

A differential k-form represents the area of a k-cube in subspace of the tangent
space.

Differential forms generalise the concept of ‘infinitesimal areas’ to manifolds.

(figure modified from K. Crane, F. de Goes,M. Desbrun and P. Schröder, ‘Digital Geometry
Processing with Discrete Exterior Calculus’, ACMSIGGRAPH 2013 Courses, ACM, 2013)
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Putting everything together

Integrating differential k-forms over a space creates singular cochains.

Thus, if we make differential k-forms learnable, we can obtain learnable maps for
representing simplicial complexes!
Nomessage passing required.
The fact that this works at all is a consequence of de Rham’s theorem, a deep result that
connects geometry and topology.
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Preliminary results

Results (mean AUROC and standard deviation of 5 runs) onmolecular graph benchmark data sets
that exhibit ‘geometrical’ node features. All models have roughly the same architecture.

No. Parameters BACE BBBP HIV

GAT 135K 69.52 ± 17.52 76.51 ± 3.36 56.38 ± 4.41
GCN 133K 66.79 ± 1.56 73.77 ± 3.30 68.70 ± 1.67
GIN 282K 42.91 ± 18.56 61.66 ± 19.47 55.28 ± 17.49

Differential k-forms 8.6K 83.50 ± 0.55 86.41 ± 3.64 76.70 ± 2.17

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 26/28

https://twitter.com/Pseudomanifold


Why shouldwe care?

‘Learning more with less.’

New paradigms can help advance the field!
Towards more sustainable models?

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 27/28

https://twitter.com/Pseudomanifold


Why shouldwe care?

‘Learning more with less.’
New paradigms can help advance the field!

Towards more sustainable models?

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 27/28

https://twitter.com/Pseudomanifold


Why shouldwe care?

‘Learning more with less.’
New paradigms can help advance the field!
Towards more sustainable models?

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 27/28

https://twitter.com/Pseudomanifold


Conclusion

Our research

https://aidos.group

https://github.com/aidos-lab

https://aatrn.net

Emerging Topics in AI: Geometry and Topology Bastian Rieck (@Pseudomanifold) 28/28

https://aidos.group
https://github.com/aidos-lab
https://aatrn.net
https://twitter.com/Pseudomanifold

