
Topological Data Analysis for Machine Learning

Lecture 4: Recent Advances in Topological Machine Learning

Bastian Rieck

�Pseudomanifold

https://twitter.com/Pseudomanifold

Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@bsse.ethz.ch or

reach out to @Pseudomanifold on Twitter. You can find the slides and additional

information with links to more literature here:

https://topology.rocks/ecml_pkdd_2020

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 1/30

mailto:bastian.rieck@bsse.ethz.ch
https://twitter.com/Pseudomanifold
https://topology.rocks/ecml_pkdd_2020

Recap

• The persistence diagram is the ‘basic’ topological feature descriptor.

• Multiple alternatives exist, with different key properties.

• Their choice is application-dependent.

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 2/30

In this lecture
Putting everything together

How can we build topology-based machine learning models?

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 3/30

Simple feature-based analysis pipeline
Suitable for point clouds, graphs, etc.

1 Pick appropriate filtration

2 Calculate persistence diagrams

3 Vectorise using persistence images

4 Use arbitrary feature-based algorithm (SVM, random

forest, …)

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 4/30

Brief example
B. Rieck et al., ‘Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence’, 2020

• Input: fMRI volumes

• Filtration: induced by ‘activation function’

• Use persistence images to obtain time-varying embedding

• Describe topological dynamics based on dimensionality reduction algorithm

• Learn about differences of population subgroups

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 5/30

Brief example, continued
Cohort brain trajectories

3.5–4.5yr 4.5–5.5yr 5.5–7.5yr 7.5–9.5yr 9.5–12.3yr 18–39yr

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 6/30

Classifying unlabelled graphs
Using ‘classical’ machine learning models

1 Calculate degree filtration (or another descriptor)

2 Repeat the analysis pipeline described above

3 Learn weights for topological descriptors to improve predictive power1

1Q. Zhao and Y. Wang, ‘Learning metrics for persistence-based summaries and applications for graph

classification’, Advances in Neural Information Processing Systems 32 (NeurIPS), 2019, pp. 9855–9866

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 7/30

Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 8/30

Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Node Own label Adjacent labels

A

B

C

D

E

F

G

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 8/30

Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Node Own label Adjacent labels Hashed label

A

B

C

D

E

F

G

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 8/30

Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Label

Count 3 1 2 1

Φ(G) := (3, 1, 2, 1)

Compare G and G ′ by evaluating a kernel between Φ(G) and
Φ(G ′) (linear, RBF, …).

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 8/30

APersistent Weisfeiler–Lehman Procedure for Graph Classification

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

Christian Bock Karsten Borgwardt
�chrs_bock �kmborgwardt

• The Weisfeiler–Lehman algorithm vectorises labelled graphs

• Persistent homology captures relevant topological features

• We can combine them to obtain a generalised formulation

• This requires a distance between multisets

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 9/30

https://twitter.com/chrs_bock
https://twitter.com/kmborgwardt

A distance between label multisets

Let A = {la1
1 , la2

2 , . . . } and B = {lb1
1 , lb2

2 , . . . } be two multisets that are defined over
the same label alphabet Σ = {l1, l2, . . . }.

Transform the sets into count vectors, i.e. ~x := [a1, a2, . . .] and ~y := [b1, b2, . . .].

Calculate theirmultiset distance as

dist(~x,~y) :=

(
∑

i
|ai − bi|p

) 1
p

,

i.e. the pth Minkowski distance, for p ∈ R. Since nodes and their multisets are in
one-to-one correspondence, we now have a metric on the graph!

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 10/30

Multiset distance
Example for p = 1

A

B

D E
F

C

G

dist(C, E) = dist
(
{ 3, 1}, { 2, 1}

)
= dist([3, 1], [2, 1])
= 1

dist(C, A) = dist
(
{ 3, 1}, { 1}

)
= dist([3, 1], [1, 0])
= 3

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 11/30

Extending the multiset distance to a distance between vertices

Use vertex label from previousWeisfeiler–Lehman iteration, i.e. l(h−1)
vi , as well as l(h)vi ,

the one from the current iteration:

dist(vi, vj) :=
[
l(h−1)
vi 6= l(h−1)

vj

]
+ dist

(
l(h)vi , l(h)vj

)
+ τ

τ ∈ R>0 is required to make this into a proper metric. This turns any labelled graph

into a weighted graph whose persistent homology we can calculate!

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 12/30

Vertex distance, multi-scale properties
Example

h = 0

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 13/30

Vertex distance, multi-scale properties
Example

h = 0 h = 1

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 13/30

Vertex distance, multi-scale properties
Example

h = 0 h = 1 h = 2

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 13/30

Vertex distance, multi-scale properties
Example

h = 0 h = 1 h = 2 h = 3

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 13/30

Persistence-basedWeisfeiler–Lehman feature vectors

Connected components

Φ(h)
P-WL

:=
[
p(h) (l0) , p(h) (l1) , . . .

]
p(h) (li) := ∑

l(v)=li

pers (v)p ,

Cycles

Φ(h)
P-WL-C

:=
[
z(h) (l0) , z(h) (l1) , . . .

]
z(h) (li) := ∑

li∈l(u,v)
pers (u, v)p ,

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 14/30

Persistence-basedWeisfeiler–Lehman feature vectors

Connected components

Φ(h)
P-WL

:=
[
p(h) (l0) , p(h) (l1) , . . .

]
p(h) (li) := ∑

l(v)=li

pers (v)p ,

Cycles

Φ(h)
P-WL-C

:=
[
z(h) (l0) , z(h) (l1) , . . .

]
z(h) (li) := ∑

li∈l(u,v)
pers (u, v)p ,

Bonus

We can re-define the vertex distance to obtain the original Weisfeiler–Lehman

subtree features (plus information about cycles):

dist(vi, vj) :=

{
1 if vi 6= vj

0 otherwise

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 14/30

Classification results

D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32± 0.35 85.96± 0.27 64.40± 0.07 63.25± 0.12 72.33± 0.32 58.31± 0.27 68.13± 0.23 66.96± 0.51 57.91± 0.83
E-Hist 72.90± 0.48 85.69± 0.46 63.66± 0.11 63.27± 0.07 72.14± 0.39 55.82± 0.00 65.53± 0.00 61.61± 0.00 59.03± 0.00

RetGK∗ 81.60± 0.30 90.30± 1.10 84.50± 0.20 75.80± 0.60 62.15± 1.60 67.80± 1.10 67.90± 1.40 63.90± 1.30

WL 79.45± 0.38 87.26± 1.42 85.58± 0.15 84.85± 0.19 76.11± 0.64 63.12± 1.44 67.64± 0.74 67.28± 0.97 64.80± 0.85
Deep-WL∗ 82.94± 2.68 80.31± 0.46 80.32± 0.33 75.68± 0.54 60.08± 2.55

P-WL 79.34± 0.46 86.10± 1.37 85.34± 0.14 84.78± 0.15 75.31± 0.73 63.07± 1.68 67.30± 1.50 68.40± 1.17 64.47± 1.84
P-WL-C 78.66± 0.32 90.51± 1.34 85.46± 0.16 84.96± 0.34 75.27± 0.38 64.02± 0.82 67.15± 1.09 68.57± 1.76 65.78± 1.22
P-WL-UC 78.50± 0.41 85.17± 0.29 85.62± 0.27 85.11± 0.30 75.86± 0.78 63.46± 1.58 67.02± 1.29 68.01± 1.04 65.44± 1.18

Try it out

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 15/30

Deep Learning with Topological Signatures

Deep Learning with Topological Signatures

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Andreas Uhl
Department of Computer Science
University of Salzburg, Austria

uhl@cosy.sbg.ac.at

Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

• Obtain persistence diagrams from graph filtration

• Define layer to project persistence diagrams to 1D

• Learn parameters for multiple projections

• Stack projected diagrams and use as features

• First successful combination of deep learning and topology!2

2C. Hofer et al., ‘Deep Learning with Topological Signatures’, Advances in Neural Information

Processing Systems 30 (NeurIPS), Red Hook, NY, USA, 2017, pp. 1634–1644

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 16/30

Details

Use a differentiable coordinatisation scheme of the form Ψ : D → R. Letting

p := (c, d) for a tuple in a diagram (in creation–persistence coordinates), we have

Ψ(p) :=

exp

(
−σ2

0 (c − µ0)2 − σ2
1 (d − µ1)

2) if c ∈ [ν, ∞)

exp
(
−σ2

0 (c − µ0)2 − σ2
1 (log(d/ν)ν + ν − µ1)

2) if c ∈ (0, ν)

0 if c = 0

with (µ0, µ1) ∈ R×R+, (σ0, σ1) ∈ R+ ×R+, and ν ∈ R+ being trainable parameters.

The whole diagram is then represented as a sum over each individual projections.

Using n different coordinatisations, we obtain a differentiable embedding of a
persistence diagram into Rn.

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 17/30

Full classification pipeline

p
e
r
s
i
s
t
e
n
t
_
h
o
m
o
l
o
g
y

{(ci, di)}i∈I

Ψ
(n times)

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 18/30

Summary

REDDIT-5K REDDIT12K

Graphlet kernel 41.0 31.8

Deep graphlet kernel 41.3 32.2

PATCHY-SAN 49.1 41.3

No essential features 49.1 38.5

With essential features 54.5 44.5

• Excellent performance for social

network graph classification.

• Simple to implement and use; feature

maps are even interpretable.

• Highly generic & not restricted to

graph classification problems.

Try it out

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 19/30

Topological autoencoders

Topological Autoencoders

Michael Moor † 1 2 Max Horn † 1 2 Bastian Rieck ‡ 1 2 Karsten Borgwardt ‡ 1 2

Abstract

We propose a novel approach for preserving topo-
logical structures of the input space in latent rep-
resentations of autoencoders. Using persistent ho-
mology, a technique from topological data analy-
sis, we calculate topological signatures of both the
input and latent space to derive a topological loss
term. Under weak theoretical assumptions, we
construct this loss in a differentiable manner, such
that the encoding learns to retain multi-scale con-
nectivity information. We show that our approach
is theoretically well-founded and that it exhibits
favourable latent representations on a synthetic
manifold as well as on real-world image data sets,
while preserving low reconstruction errors.

1. Introduction
While topological features, in particular multi-scale features
derived from persistent homology, have seen increasing use
in the machine learning community (Carrière et al., 2019,
Guss & Salakhutdinov, 2018, Hofer et al., 2017, 2019a,b,
Ramamurthy et al., 2019, Reininghaus et al., 2015, Rieck
et al., 2019a,b), employing topology directly as a constraint
for modern deep learning methods remains a challenge. This
is due to the inherently discrete nature of these computa-
tions, making backpropagation through the computation of
topological signatures immensely difficult or only possible
in certain special circumstances (Chen et al., 2019, Hofer
et al., 2019a, Poulenard et al., 2018).

This work presents a novel approach that permits obtaining
gradients during the computation of topological signatures.
This makes it possible to employ topological constraints
while training deep neural networks, as well as building
topology-preserving autoencoders. Specifically, we make

†Equal contribution. ‡These authors jointly directed this
work. 1Department of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland 2SIB Swiss Institute of Bioin-
formatics, Switzerland. Correspondence to: Karsten Borgwardt
<karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the following contributions:

1. We develop a new topological loss term for autoen-
coders that helps harmonise the topology of the data
space with the topology of the latent space.

2. We prove that our approach is stable on the level of
mini-batches, resulting in suitable approximations of
the persistent homology of a data set.

3. We empirically demonstrate that our loss term aids
in dimensionality reduction by preserving topological
structures in data sets; in particular, the learned latent
representations are useful in that the preservation of
topological structures can improve interpretability.

2. Background: Persistent Homology
Persistent homology (Barannikov, 1994, Edelsbrunner &
Harer, 2008) is a method from the field of computational
topology, which develops tools for analysing topological fea-
tures (connectivity-based features such as connected com-
ponents) of data sets. We first introduce the underlying
concept of simplicial homology. For a simplicial complex
K, i.e. a generalised graph with higher-order connectivity
information such as cliques, simplicial homology employs
matrix reduction algorithms to assign K a family of groups,
the homology groups. The dth homology group Hd(K) of
K contains d-dimensional topological features, such as con-
nected components (d = 0), cycles/tunnels (d = 1), and
voids (d = 2). Homology groups are typically summarised
by their ranks, thereby obtaining a simple invariant “signa-
ture” of a manifold. For example, a circle in R2 has one
feature with d = 1 (a cycle), and one feature with d = 0 (a
connected component).

In practice, the underlying manifoldM is unknown and we
are working with a point cloud X := {x1, . . . , xn} ⊆ Rd
and a metric dist : X × X → R such as the Euclidean
distance. Persistent homology extends simplicial homol-
ogy to this setting: instead of approximatingM by means
of a single simplicial complex, which would be an unsta-
ble procedure due to the discrete nature of X , persistent
homology tracks changes in the homology groups over mul-
tiple scales of the metric. This is achieved by construct-
ing a special simplicial complex, the Vietoris–Rips com-
plex (Vietoris, 1927). For 0 ≤ ε < ∞, the Vietoris–Rips
complex of X at scale ε, denoted by Rε(X), contains all

Michael Moor Max Horn Karsten Borgwardt
�Michael_D_Moor �ExpectationMax �kmborgwardt

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 20/30

https://twitter.com/Michael_D_Moor
https://twitter.com/ExpectationMax
https://twitter.com/kmborgwardt

Topological autoencoders
Motivation

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 21/30

Topological autoencoders
Overview

Z
Latent code

X
Input data

X̃
Reconstruction

Reconstruction loss

ε

ε

ε

ε
Topological loss

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 22/30

Topological autoencoders
Main intuition

Align persistence diagrams of an input batch and of a latent batch using a loss

function!

Why this works in theory

Let X be a point cloud of cardinality n and X(m) be one subsample of X of cardinality
m, i.e. X(m) ⊆ X, sampled without replacement. We can bound the probability of the
persistence diagrams of X(m) exceeding a threshold in terms of the bottleneck

distance as

P
(

W∞

(
DX,DX(m)

)
>ε
)
≤ P

(
distH

(
X, X(m)

)
>2ε

)
,

where distH denotes the Hausdorff distance. In other words: mini-batches are

topologically similar if the subsampling is not too coarse.

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 23/30

Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

ε

ε

Every point in the persistence diagram can be mapped to one entry in the distance

matrix! Each entry is a distance, so it can be changed during training (at least in the

latent space).

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 24/30

Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

ε

ε

Every point in the persistence diagram can be mapped to one entry in the distance

matrix! Each entry is a distance, so it can be changed during training (at least in the

latent space).

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 24/30

Topological autoencoders
Gradient calculation intuition

Distance matrix A
0 1 9 10
1 0 7 8
9 7 0 3
10 8 3 0

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

ε

ε

Every point in the persistence diagram can be mapped to one entry in the distance

matrix! Each entry is a distance, so it can be changed during training (at least in the

latent space).

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 24/30

Topological autoencoders
Loss term

Lt := LX→Z +LZ→X

LX→Z := 1
2

∥∥AX[πX]− AZ[πX]∥∥2 LZ→X := 1
2

∥∥AZ[πZ]− AX[πZ]∥∥2

• X : input space
• Z : latent space
• AX: distances in input mini-batch

• AZ: distances in latent mini-batch

• πX: persistence pairing of input mini-batch

• πZ: persistence pairing of latent mini-batch

The loss is bi-directional!

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 25/30

Qualitative evaluation
‘Spheres’ data set

PCA UMAP Autoencoder

Isomap t-SNE Topological autoencoder

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 26/30

Quantitative evaluation

Data set Method KL0.01 KL0.1 KL1 `-MRRE `-Cont `-Trust `-RMSE MSE (data)

‘Spheres’

Isomap 0.181 0.420 0.00881 0.246 0.790 0.676 10.4

PCA 0.332 0.651 0.01530 0.294 0.747 0.626 11.8 0.9610

t-SNE 0.152 0.527 0.01271 0.217 0.773 0.679 8.1

UMAP 0.157 0.613 0.01658 0.250 0.752 0.635 9.3

AE 0.566 0.746 0.01664 0.349 0.607 0.588 13.3 0.8155

TopoAE 0.085 0.326 0.00694 0.272 0.822 0.658 13.5 0.8681

‘Fashion-MNIST’

PCA 0.356 0.052 0.00069 0.057 0.968 0.917 9.1 0.1844

t-SNE 0.405 0.071 0.00198 0.020 0.967 0.974 41.3

UMAP 0.424 0.065 0.00163 0.029 0.981 0.959 13.7

AE 0.478 0.068 0.00125 0.026 0.968 0.974 20.7 0.1020

TopoAE 0.392 0.054 0.00100 0.032 0.980 0.956 20.5 0.1207

‘MNIST’

PCA 0.389 0.163 0.00160 0.166 0.901 0.745 13.2 0.2227

t-SNE 0.277 0.133 0.00214 0.040 0.921 0.946 22.9

UMAP 0.321 0.146 0.00234 0.051 0.940 0.938 14.6

AE 0.620 0.155 0.00156 0.058 0.913 0.937 18.2 0.1373

TopoAE 0.341 0.110 0.00114 0.056 0.932 0.928 19.6 0.1388

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 27/30

Open questions
A collection

• Should we learn filtrations or use fixed ones?

• Can we map topological features back to features in the data?

• How can we scale algorithms to massive data sets?

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 28/30

What is next?

• Visit the NeurIPS 2020Workshop on ’Topological Data Analysis and Beyond’3.

• Try out your own projects using Giotto-tda4

• Join the ’TDA in ML’ Slack community!

3https://tda-in-ml.github.io
4https://giotto-ai.github.io/gtda-docs/latest/index.html

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 29/30

https://tda-in-ml.github.io
https://giotto-ai.github.io/gtda-docs/latest/index.html

Take-awaymessages

• Topological features are incredibly versatile.

• Their integration in modern machine learning architectures is an ongoing

research topic.

• Topological machine learning shines when working with structural information,

such as in the case of graphs.

https://topology.rocks/ecml_pkdd_2020

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 30/30

https://topology.rocks/ecml_pkdd_2020

	anm1:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

