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Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@bsse.ethz.ch or

reach out to @Pseudomanifold on Twitter. You can find the slides and additional

information with links to more literature here:

https://topology.rocks/ecml_pkdd_2020
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Recap

• To distinguish between topological objects, we can use Betti numbers.

• Betti numbers count high-dimensional holes.

• Their calculation requires a simplicial complex and some linear algebra.
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In this lecture
Going from theory to practice

Real-world objects are typically not described in terms of

simplicial complexes. How to bridge this gap?
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Example

What we get
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Example

What we see
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From point clouds to simplicial complexes

Vietoris–Rips complex

Given a set of points X = {x1, . . . , xn} and a metric dist such as the Euclidean
distance, pick a threshold ε and build the Vietoris–Rips complex Vε defined as:

Vε(X ) := {σ ⊆ X | ∀u, v ∈ σ : dist(u, v) ≤ ε}

Equivalently, Vε contains all simplices whose diameter is less than or equal to ε.
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Example
Vietoris–Rips construction

ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

Draw Euclidean balls (circles) of diameter ε and create a k-simplex σ for each subset

of k + 1 points that intersect pairwise.
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Some details about this construction

• This construction dates back to a 1927 article by Leopold

Vietoris1, who is shown on the left.

• A 2010 paper by Afra Zomorodian2 describes several

construction algorithms.

• The basic idea is to build higher-dimensional simplices

inductively from lower-dimensional ones.

• In the worst case, the Vietoris–Rips complex will contain

all 2n subsets of its underlying point cloud X !

1L. Vietoris, ‘Über den höheren Zusammenhang kompakter Räume und eine Klasse von

zusammenhangstreuen Abbildungen’,Mathematische Annalen 97.1, 1927, pp. 454–472
2A. J. Zomorodian, ‘Fast construction of the Vietoris–Rips complex’, Computers & Graphics 34.3,

2010, pp. 263–271
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Example
The Betti numbers of a Vietoris–Rips complex

ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0
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Issues with this approach

• How to pick ε?

• There might not be one ‘correct’ value for ε.

• Computationally inefficient; matrix reduction has to be performed for every

simplicial complex.
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Just calculate topological features for all
possible scales!
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Intuition
Go through all scales and track topological features
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Intuition
Go through all scales and track topological features

Creation
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Nesting property

Given ε1 ≤ ε2, we have Vε1 ⊆ Vε2 . This nesting property is the key towards improved

calculations!

Example

⊆ ⊆ ⊆ ⊆
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Filtrations
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The Betti number of the data persists over a range of the threshold parameter ε. To
formalise this, assume that simplices in the Vietoris–Rips complex are added one

after the other. This gives rise to a filtration , i.e.

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = Vε,

where each Ki is a valid simplicial subcomplex of Vε.
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Chain complexes and filtrations

Since Ki ⊆ Kj for i ≤ j, we obtain a sequence of homomorphisms connecting the

homology groups of each simplicial complex, i.e.

f i,j
p : Hp(Ki) → Hp(Kj),

which in turn gives rise to a sequence of homology groups, i.e.

0 = Hp(K0)
f 0,1
p−→ Hp(K1)

f 1,2
p−→ . . .

f n−2,n−1
p−−−−→ Hp(Kn−1)

f n−1,n
p−−−→ Hp(Kn) = Hp(Vε),

with p denoting the dimension of the corresponding homology group.
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Interlude
This is not ‘abstract nonsense’

The fact that we can reformulate the previously-seen concepts in the context of a

filtration illustrates how generic this formulation is!

�
See the blog post ‘What is a Functor?’ by Tai-Danae Bradley for an excellent

explanation of this.
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Persistent homology group

Given two indices i ≤ j, the pth persistent homology group Hi,j
p is defined as

Hi,j
p := Zp (Ki) /

(
Bp

(
Kj

)
∩ Zp (Ki)

)
,

which contains all the homology classes of Ki that are still present in Kj.

Implication

We can calculate a new set of homology groups alongside the filtration and assign a

‘duration’ to each topological feature.

Topological Data Analysis for Machine Learning Bastian Rieck 14th September 2020 16/30



Persistent homology
Tracking of topological features

• Creation in Ki : c ∈ Hp (Ki), but c /∈ Hi−1,i
p

• Destruction in Kj : c is created in Ki, with f i,j−1
p (c) /∈ Hi−1,j−1

p and f i,j
p (c) ∈ Hi−1,j

p

The persistence of a class c that is created in Ki and destroyed in Kj is defined as

pers(c) := |w(j)− w(i)|,

where w: Z→ R assigns each simplicial complex of the filtration a weight, such as

an associated distance, or an index. Persistence thus measures the ‘scale’ at which a

certain topological feature occurs.
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Standard filtrations
The distance filtration

Given a distance metric dist, such as the Euclidean metric, the distance filtration

assigns weights based on pairwise distances between points:

w(σ) :=


0 if σ is a vertex

dist(u, v) if σ = {u, v}
maxτ⊆σ w(τ) else

Simplices need to be sorted in ascending order of their weights; in case of a tie, faces

precede co-faces.

Persistent homology is capable of preserving distances under random projections3.

3D. R. Sheehy, ‘The Persistent Homology of Distance Functions under Random Projection’,

Proceedings of the 30th Annual Symposium on Computational Geometry, 2014, pp. 328–334
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Standard filtrations
The sublevel set filtration

Given a scalar function f : vertices(K) → defined on the vertices of a simplicial

complex, such as a temperature measurement, the sublevel set filtration propagates

those weights through a simplicial complex:

w(σ) :=

{
f (v) if σ = {v}
maxτ⊆σ w(τ) else

Simplices need to be sorted in ascending order of their weights; in case of a tie, faces

precede co-faces.

Conversely, one can calculate the superlevel set filtration by using min instead of max
and sorting in simplices in descending order of their weights.
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Example
Boundary matrix calculation alongside a filtration

a b

c

ba

M =

a b c ab bc ac abc



0 0 0 0 0 0 0 a
0 0 0 0 0 0 0 b
0 0 0 0 0 0 0 c
0 0 0 0 0 0 0 ab
0 0 0 0 0 0 0 bc
0 0 0 0 0 0 0 ac
0 0 0 0 0 0 0 abc
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a b

c
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Boundary matrix reduction by column operations

Let M be a boundary matrix

for i = 1 do

while ∃i′ < i : low(i′) = low(i) 6= 0
do

M(i) = M(i)⊕ M(i′)
end while

end for

M =



0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
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Using the reduced boundary matrix

a b c ab bc ac abc



0 0 0 1 0 0 0 a
0 0 0 1 1 0 0 b
0 0 0 0 1 0 0 c
0 0 0 0 0 0 1 ab
0 0 0 0 0 0 1 bc
0 0 0 0 0 0 1 ac
0 0 0 0 0 0 0 abc

• If column i is empty, then σi is a

positive simplex that creates a

topological feature.

• If column j is non-empty with

low(j) = k, then σj is a negative

simplex that destroys the topological

feature created by σk.

• For example, simplex abc destroys the
cycle created by ac.
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Illustrative example I

ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.5 ε = 1.0

Here, the topological feature is the circle that underlies that data. Since it persists

from ε = 0.20 to ε = 1.0, its persistence is pers = 1.0 − 0.20 = 0.80.
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Topological features and how to track them

Types of topological features

• Dimension 0: connected components
• Dimension 1: cycles
• Dimension 2: voids

Given a topological feature with associated simplicial complexes Ki and Kj, store the

point (w(i), w(j)) in a persistence diagram.

�
If a feature is never destroyed, we assign it a weight of ∞.
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Example persistence diagram
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Illustrative example II

ε = 0.00: 16 connected components

ε = 0.25: 11 connected componentsε = 0.50: 1 connected component, 12 cyclesε = 0.75: 1 connected component, 19 cyclesε = 1.00: 1 connected component, 57 cycles
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Calculation in practice

• Calculations are bounded by matrix reduction complexity.

• Smart implementations make a difference.

• U. Bauer’s Ripser4 is extremely fast.

Speed-ups involve different orderings for the column reduction

steps, using implicit representations (which are more efficient

than explicit ones), and much more.

4U. Bauer, ‘Ripser: efficient computation of Vietoris–Rips persistence barcodes’, 2019
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Topological features of non-simplicial domains

Persistent homology is not restricted to the ‘triangular’ setting. It is also

possible to define a filtration over cubical domains5.

Potential data sources

• Images

• Finite element simulations

• Voxel spaces6

The nice thing is that all considerations and concepts apply virtually

unchanged!

5The image of the ‘cubical complex’ is modelled after R. Ghrist’s excellent book ‘Elementary Applied

Topology’
6B. Rieck et al., ‘Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence’,

2020
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Current research directions

Properties of filtrations

Can we find filtrations that are more robust to noise, easier to calculate, and more

expressive?

Sparse filtrations

Simplices are not equally important. Can we find sparse filtrations consisting of fewer

simplices but with essentially the same topological features?
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Take-awaymessages

• Point clouds can be converted into simplicial complexes.

• Persistent homology is the multi-scale equivalent of simplicial homology.

• The calculation of persistent homology also boils down to linear algebra.

• Filtrations are the key for tracking topological features.

https://topology.rocks/ecml_pkdd_2020
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