Topological Data Analysis for Machine Learning Lecture 1: Algebraic Topology Bastian Rieck

Preliminaries

Do you have feedback or any questions? Write to bastian.rieck@bsse.ethz.ch or reach out to @Pseudomanifold on Twitter. You can find the slides and additional information with links to more literature here:

https://topology.rocks/ecml_pkdd_2020

Which qualities of the sphere make it *different* from the torus?

Betti numbers

The d^{th} Betti number counts the number of d-dimensional holes. It can be used to distinguish between spaces.

- β_0 Connected components
- β_1 Tunnels
- β_2 Voids

Space	β_0	β_1	β_2
Point	1	0	0
Cube	1	0	1
Sphere	1	0	1
Torus	1	2	1

Agenda

- **1** Use *simplicial complex* to model a space.
- **2** Define boundary operators and maps.
- 3 Calculate Betti numbers using matrix reduction.

Definition

We call a non-empty family of sets K with a collection of non-empty subsets S an *abstract simplicial complex* if:

1
$$\{v\} \in S$$
 for all $v \in K$.

2 If
$$\sigma \in S$$
 and $\tau \subseteq \sigma$, then $\tau \in K$.

Terminology

The elements of a simplicial complex K are called *simplices*. A k-simplex consists of k + 1 vertices.

Example

Example

Example

Example

Non-example

This is *not* a simplicial complex because some higher-dimensional simplices do not intersect in a lower-dimensional one!

More examples

- Graphs can be considered (low-dimensional) simplicial complexes.
- Simplicial complexes can be obtained from point clouds (more about this later).
- Hypergraphs can be converted to simplicial complexes.

Digression

Groups

Definition

A group is a set G with a binary operation \cdot that combines two elements to yield another one, such that (G, \cdot) has the following properties:

- **1** The operation is *closed*, i.e. $a \cdot b \in G$ for $a, b \in G$.
- **2** The operation is *associative*, i.e. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for $a, b, c \in G$.
- **3** There is an *identity element* $e \in G$ such that $e \cdot a = a \cdot e = a$ for $a \in G$.
- **4** Each $a \in G$ has an inverse element $a^{-1} \in G$ such that $a \cdot a^{-1} = e = a^{-1} \cdot a$.

The operation \cdot is not required to be commutative. In general, $a \cdot b = b \cdot a$ is not required to hold. However, the groups that we will encounter are commutative!

Groups

Examples and non-examples

- The set with only two elements and addition modulo 2 is group, called \mathbb{Z}_2 .¹
- The set of integers $\ensuremath{\mathbb{Z}}$ with the usual addition is a group.
- The set of ${\rm I\!R}\xspace$ -valued quadratic matrices with elementwise addition is a group.
- The set of ${\rm I\!R}$ -valued quadratic matrices with non-zero determinant together with matrix multiplication is a group.
- The natural numbers \mathbb{N} with addition do *not* form a group (why?).

¹It is actually also a *field*, the smallest non-trivial field.

Back to simplicial complexes

Chain groups

Definition

Given a simplicial complex K, the p^{th} chain group C_p of K consists of all combinations of *p*-simplices in the complex. Coefficients are in \mathbb{Z}_2 , hence all elements of C_p are of the form $\sum_j \sigma_j$, for $\sigma_j \in K$. The group operation is addition with \mathbb{Z}_2 coefficients.

 \mathbb{Z}_2 is convenient for implementation reasons because *addition* can be implemented as *symmetric difference*. Other choices are possible!

We need chain groups to algebraically express the concept of a *boundary*.

Simplicial chains

Let $K = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. Some valid simplicial 1-chains of K are:

- {*a*,*b*}
- {*a*,*c*}
- {*b*,*c*}
- $\{a,b\} + \{a,c\}$
- $\{a,b\} + \{b,c\}$
- $\{a,c\} + \{b,c\}$
- $\{b,c\} + \{a,c\} + \{a,b\}$

Boundary homomorphism

Given a simplicial complex K, the p^{th} boundary homomorphism is a function that assigns each simplex $\sigma = \{v_0, \ldots, v_p\} \in K$ to its *boundary*:

$$\partial_p \sigma = \sum_i \{v_0, \dots, \widehat{v}_i, \dots, v_p\}$$

In the equation above, \hat{v}_i indicates that the set does *not* contain the *i*th vertex. The function $\partial_p : C_p \to C_{p-1}$ is thus a homomorphism between the chain groups.

Caveat

With other coefficients, the boundary homomorphism is slightly more complex, involving alternating signs for the different terms. Over \mathbb{Z}_2 , signs can be ignored.

Boundary homomorphism

Example

Let $K = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. The boundary of the triangle is non-trivial:

 $\partial_2\{a,b,c\} = \{b,c\} + \{a,c\} + \{a,b\}$

The boundary of its edges is trivial, though, because duplicate simplices cancel each other out:

$$\partial_1 \left(\{b,c\} + \{a,c\} + \{a,b\} \right) = \{c\} + \{b\} + \{c\} + \{a\} + \{b\} + \{a\} = 0$$

Chain complex

For all p, we have $\partial_{p-1} \circ \partial_p = 0$: Boundaries do not have a boundary themselves. This leads to the chain complex:

$$0 \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

Digression

Kernel and image

Definition

The *kernel* of a homomorphism $f: A \to B$ is the set of all elements that are mapped to the zero element, i.e. ker $f := \{a \in A \mid f(a) = 0\} \subseteq A$. The *image* of f is the set of all its outputs, i.e. im $f := \{f(a) \mid a \in A\} \subseteq B$.

Cycle and boundary groups

Cycle group $Z_p = \ker \partial_p$ Boundary group $B_p = \operatorname{im} \partial_{p+1}$

We have $B_p \subseteq Z_p$ in the group-theoretical sense. In other words, every boundary is also a cycle.

(The fact that these sets are groups is a consequence of some deep theorems in group theory! Unfortunately, we cannot cover all of these things here...)

Digression

Normal subgroup and quotient group

Normal subgroup

Let G be a group and N be a subgroup. N is a normal subgroup if $gng^{-1} \in N$ for all $g \in G$ and $n \in N$.

For an abelian group, every subgroup is normal!

Definition

Let *G* be a group and *N* be a normal subgroup of *G*. Then the *quotient group* is defined as $G/N := \{gN \mid g \in G\}$, partitioning *G* into equivalence classes. Intuitively, G/N consists of all elements in *G* that are *not* in *N*.

Quotient groups

Example

 $2\mathbb{Z} \subseteq \mathbb{Z}$ is the subgroup of \mathbb{Z} defined by being a multiple of 2. Hence, $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$ consists of only 0 and 1.

Why quotient groups?

Quotient groups 'reduce' a group by partitioning it into equivalence classes that are defined by another subgroup.

Homology groups & Betti numbers

The p^{th} homology group H_p is a quotient group, defined by 'removing' cycles that are boundaries from a higher dimension:

$$H_p = Z_p / B_p = \ker \partial_p / \operatorname{im} \partial_{p+1},$$

With this definition, we may finally calculate the p^{th} Betti number:

 $\beta_p = \operatorname{rank} H_p$

The rank is a generating set of the smallest cardinality. We will see how to calculate this easily!

Intuition

Calculate all boundaries, remove the boundaries that come from higher-dimensional objects, and count what is left.

Simplicial complex

$$\mathbf{K} = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$$

Notice that K does not contain the 2-simplex $\{a, b, c\}$. Next, we will see how to calculate the boundary matrix of K and its homology groups!

Boundary matrix calculation

а •

Boundary matrix calculation

a ● *b*

Boundary matrix calculation

а

a•

Boundary matrix calculation

С

•b

Boundary matrix calculation

Boundary matrix calculation

Boundary matrix calculation

Dimension 0

To compute H_0 , we need to calculate $Z_0 = \ker \partial_0$ and $B_0 = \operatorname{im} \partial_1$.

Calculating Z_0

We have $Z_0 = \ker \partial_0 = \operatorname{span}(\{a\}, \{b\}, \{c\})$, because each one of these simplices is mapped to zero. Since we cannot express any one of these simplices as a linear combination of the others, we have $Z_0 = (\mathbb{Z}/2\mathbb{Z})^3$,

Calculating B_0

We have $B_0 = \operatorname{im} \partial_1 = \operatorname{span}(\{a\} + \{b\}, \{b\} + \{c\}, \{a\} + \{c\})$. However, since $\{a\} + \{b\} + \{b\} + \{c\} = \{a\} + \{c\}$, there are only two independent elements, i.e. $\operatorname{im} \partial_1 = \operatorname{span}(\{a\} + \{b\}, \{b\} + \{c\})$. Hence, $B_0 = (\mathbb{Z}/2\mathbb{Z})^2$.

Dimension 0, continued

- By definition, $H_0 = Z_0 / B_0 = (\mathbb{Z}/2\mathbb{Z})^3 / (\mathbb{Z}/2\mathbb{Z})^2 = \mathbb{Z}/2\mathbb{Z}$.
- Hence, $\beta_0 = \operatorname{rank} H_0 = 1$.

Intuition

Our calculation tells us that the simplicial complex has a *single* connected component!

Dimension 1

To compute H_1 , we need to calculate $Z_1 = \ker \partial_1$ and $B_1 = \operatorname{im} \partial_2$.

Calculating Z_1

We have $Z_1 = \ker \partial_1 = \operatorname{span}(\{a, b\} + \{b, c\} + \{a, c\})$. This is the *only* cycle in K; we can verify this by inspection or pure combinatorics. Hence, $Z_1 = \mathbb{Z}/2\mathbb{Z}$.

Calculating B_1

There are *no* 2-simplices in K, so $B_1 = \operatorname{im} \partial_2 = \{0\}$.

Dimension 1, continued

- By definition, $H_1 = Z_1/B_1 = (\mathbb{Z}/2\mathbb{Z})/\{0\} = \mathbb{Z}/2\mathbb{Z}$.
- Hence, $\beta_1 = \operatorname{rank} H_1 = 1$.

Intuition

Our calculation tells us that the simplicial complex has a *single* cycle!

This is one of the few situations in which a 'division by zero' is well-defined! By the definition of the quotient group, this means we are *not* removing any elements from the group.

Homology calculations in practice

Smith normal form

Let *M* be an $n \times m$ matrix with at least one non-zero entry over some field \mathbb{F} . There are invertible matrices *S* and *T* such that the matrix product *SMT* has the form

$$SMT = egin{pmatrix} b_0 & 0 & 0 & \cdots & 0 \ 0 & b_1 & 0 & \cdots & 0 \ 0 & 0 & \ddots & & 0 \ dots & & b_k & & dots \ & & & 0 & dots \ & & & 0 & dots \ & & & & \ddots & dots \ 0 & & & \cdots & & 0 \end{pmatrix}$$
 ,

where all the entries b_i satisfy $b_i \ge 1$ and divide each other, i.e. $b_i \mid b_{i+1}$. All b_i are unique up to multiplication by a unit.

Homology calculations in practice

- **1** Calculate boundary operator matrices.
- **2** Bring each matrix into Smith normal form (similar to Gaussian elimination).
- **3** Read off description of p^{th} homology group.

We have:

- rank Z_p is the number of zero columns of the boundary matrix of ∂_p .
- rank B_p is the number of non-zero rows of the boundary matrix of ∂_{p+1} .

Take-away messages

- Homology groups characterise topological objects.
- They can be easily expressed as linear operators.
- The calculation of homology groups boils down to linear algebra.

https://topology.rocks/ecml_pkdd_2020