HELMHOLTZ MUNICI: AIH Institute of AI for Health

A Good Scale is Hard To Find

Shape Analysis Using Topology

Bastian Rieck (@Pseudomanifold)

Getting Acquainted

Why is a sphere not the same as a torus?

Betti numbers

The d^{th} Betti number counts the number of d-dimensional holes. It can be used to distinguish between spaces.

- eta_0 Connected components
- β_1 Tunnels
- β_2 Voids

Space	eta_0	eta_1	eta_2
Point	1	0	0
Cube	1	0	1
Sphere	1	0	1
Torus	1	2	1

How to handle real-world data?

Vietoris–Rips complex

$$\mathcal{V}_{\epsilon} := \{\{x_1, x_2, \ldots\} \mid \operatorname{dist}(x_i, x_j) \leq \epsilon \text{ for all } i \neq j\}$$

Vietoris–Rips complex

 $\mathcal{V}_{\epsilon} := \{\{x_1, x_2, \ldots\} \mid \text{dist}(x_i, x_j) \le \epsilon \text{ for all } i \neq j\}$

Vietoris–Rips complex

 $\mathcal{V}_{\epsilon} := \{\{x_1, x_2, \ldots\} \mid \operatorname{dist}(x_i, x_j) \leq \epsilon \text{ for all } i \neq j\}$

Vietoris–Rips complex

 $\mathcal{V}_{\epsilon} := \{\{x_1, x_2, \ldots\} \mid \text{dist}(x_i, x_j) \le \epsilon \text{ for all } i \neq j\}$

Vietoris–Rips complex

How to pick ϵ ?

Distances between persistence diagrams

Bottleneck distance

Given two persistence diagrams \mathscr{D} and \mathscr{D}' , their *bottleneck* distance is defined as

$$W_{\infty}(\mathcal{D}, \mathcal{D}') := \inf_{\eta: \mathcal{D} \to \mathcal{D}'} \sup_{x \in \mathcal{D}} \|x - \eta(x)\|_{\infty},$$

where $\eta: \mathscr{D} \to \mathscr{D}'$ denotes a bijection between the point sets of \mathscr{D} and \mathscr{D}' and $\|\cdot\|_{\infty}$ refers to the L_{∞} distance between two points in \mathbb{R}^2 .

Wasserstein distance

$$W_{p}(\mathcal{D}_{1},\mathcal{D}_{2}) := \left(\inf_{\eta: \mathcal{D}_{1} \to \mathcal{D}_{2}} \sum_{x \in \mathcal{D}_{1}} \|x - \eta(x)\|_{\infty}^{p}\right)^{\frac{1}{p}}$$

Differences between the two distances

Wasserstein distance

Differences between the two distances

Bottleneck distance

Wasserstein distance

Persistence images

Multi-scale descriptors

Algorithm

Use $\Psi : \mathbb{R}^2 \to \mathbb{R}$ to turn a diagram \mathcal{D} into a surface via $\Psi(z) := \sum_{x,y \in \mathcal{D}} w(x,y) \Phi(x,y,z)$, where $w(\cdot)$ is a fixed piecewise linear weight function and $\Phi(\cdot)$ denotes a probability distribution, which is typically chosen to be a normalised symmetric Gaussian. By discretising Ψ (using an $r \times r$ grid), a persistence diagram is transformed into a *persistence image*.

Publication

H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, S. Chepushtanova, E. Hanson, F. Motta and L. Ziegelmeier, 'Persistence Images: A Stable Vector Representation of Persistent Homology', *Journal of Machine Learning Research*, 2017.

Part I: Analysing the shape of fMRI data

fMRI data

Our approach

- lpha Calculate topological features of ${
 m I\!M}$ 'measured' via f
- ☆ Obtain stable topological summaries at different resolutions

Main advantage of this approach

Working on the 'raw' data; no auxiliary representations necessary! In particular, no *atlas* required (fewer modelling choices in total).

Publication

B. Rieck^{*}, T. Yates^{*}, C. Bock, K. Borgwardt, G. Wolf, N. Turk-Browne[†] and S. Krishnaswamy[†], 'Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence', *Advances in Neural Information Processing Systems (NeurIPS)*, 2020, arXiv: 2006.07882 [q-bio.NC].

Working with volume data

A volume is a special type of topological complex, a *cubical complex*. With minor modifications, persistent homology works in this setting as well, and a provided likelihood function f directly leads to a filtration.

Publication

See H. Wagner, C. Chen and E. Vuçini, 'Efficient Computation of Persistent Homology for Cubical Data', *Topological Methods in Data Analysis and Visualization II: Theory, Algorithms, and Applications,* 2012. for more information.

Intuition

Workflow

fMRI volume

Cubical complex

Persistence diagram

Persistence images

Our data set

- 155 (122 children, 33 adults) participants are being shown the film 'Partly Cloudy'
- Continuous stimulation of participants
- No additional information about participants has been provided on purpose

Summary statistics of a persistence diagram

Norms of a persistence diagram

$$\|\mathscr{D}\|_{\infty} := \max_{x,y \in \mathscr{D}} \operatorname{pers}(x,y)^p$$
 and $\|\mathscr{D}\|_p := \sqrt[p]{\sum_{x,y \in \mathscr{D}} \operatorname{pers}(x,y)^p},$

These norms are stable and highly useful in obtaining simple descriptions of time-varying persistence diagrams!

Age prediction based on summary statistics

Method	BM	ОМ	ХМ
baseline-tt	0.09	0.02	0.24
baseline-pp	0.41	0.40	0.40
tt-corr-tda	0.17	0.11	0.23
pp-corr-tda	0.25	0.27	0.23
srm	0.44		
$\ \mathcal{D}\ _1$	0.46	0.67	0.48
$\ \mathscr{D}\ _{\infty}$	0.61	0.77	0.73

Brain state trajectories

XOR mask

Part II: Predicting the shape of cells

Cell shape prediction

- $\,\, \textcircled{}\,$ Use confocal fluorescence microscopy to obtain images of cells.
- ☆ What is the 3D shape of a cell?
- Morphological analysis is crucial for certain pathologies!
 When used properly, RBC [red blood cell] morphology can be a key tool for laboratory hematology professionals to recommend appropriate clinical and laboratory follow-up and to select the best tests for definitive diagnosis.
 (J. Ford, 'Red blood cell morphology', International Journal of Laboratory Hematology, 2013.)

SHAPR

Overview

We are trying to solve a complicated *inverse problem*, going from 2D to 3D. This is an ill-defined problem with a large number of potential solutions.

SHAPR

Architecture

We are learning a *likelihood function* $f \colon \mathbb{R}^3 \to \mathbb{R}$. Formally, f 'lives' on a voxel grid, assigning each voxel x a value that indicates the likelihood of x being part of the 'true' volume.

SHAPR

Loss function

$$\mathcal{L}_{\mathsf{G}}(f,f') \coloneqq \frac{2\,\mathcal{L}_{\mathsf{Dice}}(f,f') + \mathcal{L}_{\mathsf{BCE}(f,f')}}{2}$$
$$\mathcal{L}_{\mathsf{Dice}}(f,f') \coloneqq \frac{2|\mathsf{Vol}_{f} \cap \mathsf{Vol}_{f'}|}{|\mathsf{Vol}_{f}| + |\mathsf{Vol}_{f'}|} = \frac{2\mathsf{TP}}{2\mathsf{TP} + \mathsf{FP} + \mathsf{FN}}$$

Intuition

Compare *geometry* of the resulting volumes on a per-voxel basis. Is the reconstructed volume well-aligned with the ground truth one?

SHAPR goes topological

$$\mathscr{L}_{\mathsf{T}}(f,f',q) := \sum_{i=0}^{d} \mathsf{W}_{q}\left(\mathscr{D}_{f}^{(i)},\mathscr{D}_{f'}^{(i)}\right) + \operatorname{pers}\left(\mathscr{D}_{f'}^{(i)}\right)$$

SHAPR goes topological

$$\mathscr{L}_{\mathsf{T}}(f,f',q) := \sum_{i=0}^{d} W_{q}\left(\mathscr{D}_{f}^{(i)},\mathscr{D}_{f'}^{(i)}\right) + \operatorname{pers}\left(\mathscr{D}_{f'}^{(i)}\right)$$

Loss components

- Aligning the ground truth likelihood f and the predicted likelihood function f'.
- Reducing the geometrical-topological variation of the predicted likelihood function <math>f'.

SHAPR goes topological

$$\mathscr{L}_{\mathsf{T}}(f,f',q) := \sum_{i=0}^{d} W_{q}\left(\mathscr{D}_{f}^{(i)},\mathscr{D}_{f'}^{(i)}\right) + \operatorname{pers}\left(\mathscr{D}_{f'}^{(i)}\right)$$

Loss components

- Aligning the ground truth likelihood f and the predicted likelihood function f'.
- Reducing the geometrical-topological variation of the predicted likelihood function <math>f'.

We obtain a *combined loss* by choosing $\lambda \in \mathbb{R}_{>0}$ and calculating:

 $\mathscr{L} := \mathscr{L}_{\mathsf{G}} + \lambda \, \mathscr{L}_{\mathsf{T}}$

Quantitative results

		Red blood cell ($n = 825$)		Nuclei (<i>n</i> = 887)	
Metric	$\mathscr{L}_{\mathtt{T}}$	Median	$\mu \pm \sigma$	Median	$\mu \pm \sigma$
1-loU	×	0.48	0.49 <u>+</u> 0.12	0.62	0.62 <u>+</u> 0.11
	√	0.46	0.47 <u>+</u> 0.10	0.61	0.61 <u>+</u> 0.11
Volume	×	0.31	0.35 ± 0.31	0.34	0.48 ± 0.47
	✓	0.21	0.25 ± 0.24	0.32	0.43 ± 0.42
Surface area	×	0.20	0.24 <u>+</u> 0.20	0.21	0.27 ± 0.25
	√	0.13	0.18 <u>+</u> 0.16	0.18	0.25 ± 0.24
Surface roughness	×	0.35	0.36 <u>+</u> 0.24	0.17	0.18 ± 0.12
	√	0.24	0.29 <u>+</u> 0.22	0.18	0.19 ± 0.13

Summary

- Topology can provide useful inductive biases for shape reconstruction tasks.
- Persistence diagrams encode geometrical *and* topological properties of data.
- ☆ Integration into 'standard' machine learning models is possible!

Publications

- F. Hensel, M. Moor and B. Rieck, 'A Survey of Topological Machine Learning Methods', Frontiers in Artificial Intelligence, 2021.
- D. J. E. Waibel, S. Atwell, M. Meier, C. Marr and B. Rieck, 'Capturing Shape Information with Multi-Scale Topological Loss Terms for 3D Reconstruction', *Medical Image Computing and Computer Assisted Intervention (MICCAI)*, 2022, arXiv: 2203.01703 [cs.CV], in press.

Software

https://github.com/aidos-lab/pytorch-topological

Acknowledgements

My co-authors, in particular Carsten, Dominik, Felix, and Michael.