Abstract simplicial complex

Simplicial complex

A simplicial complex \mathcal{C} is a set of finite sets such that if $\sigma \in \mathcal{C}$ and $\tau \subseteq \sigma$ then $\tau \in \mathcal{C}$. For every $\tau \subseteq \sigma \in \mathcal{C}$, the set τ is a face of σ, whereas σ is a coface of τ.

k-simplex

$\sigma \in \mathcal{C}$ with $|\sigma| = k + 1$ is called a k-simplex.

Orientation

An orientation of k-simplices is an equivalence class of orderings where two simplices are considered equal if the permutation has a sign of 1.
Geometric realization

- Realize a k-simplex as the *convex hull* of $k + 1$ affinely independent points in some \mathbb{R}^d, with $d \geq k$.
- Need to ensure that the simplicess only intersect along *shared faces*.
- Geometric intuition:
 - 0-simplices: vertices
 - 1-simplices: edges
 - 2-simplices: triangles
 - 3-simplices: tetrahedra

Not interested in that.
The \(k \)th chain group \(C_k \) of \(C \) is the free abelian group on the set of oriented \(k \)-simplices. The group contains all abstract combinations of oriented \(k \)-simplices with coefficients from either a field or a principal ideal domain.

\[c \in C_k \text{ is a } k\text{-chain, i.e.} \quad c = \sum_i \lambda_i [\sigma_i], \]

with \(\lambda_i \in \mathbb{Z} \), for example, and \(\sigma_i \in C \).
The kth boundary operator $\partial_k : C_k \rightarrow C_{k-1}$ is a homomorphism whose action on a chain c is defined on a simplex $\sigma = [v_0, v_1, \ldots, v_k]$ by

$$\partial_k \sigma = \sum_i (-1)^i [v_0, v_1, \ldots, \hat{v}_i, \ldots, v_k],$$

where \hat{v}_i signifies that the ith vertex is removed from the chain.
Mathematical background

Chain complex and subgroups

The boundary operators connect the chain groups of different dimensions. This forms a *chain complex*, i.e.

\[\cdots \rightarrow C_{k+1} \rightarrow C_k \rightarrow C_{k-1} \rightarrow \cdots \]

Subgroups of C_k

We have the *cycle group* $Z_k = \ker \partial_k$ (mnemonic: “Zykel”) and the *boundary group* $B_k = \text{im} \partial_{k+1}$. Since $\partial_k \partial_{k+1} = 0$, the subgroups are nested:

\[B_k \subseteq Z_k \subseteq C_k \]
Homology

kth homology group

\[H_k = Z_k / B_k \]

This is well-defined because the subgroups are nested. The elements of the kth homology group are classes of *homologous cycles*. If the coefficients are taken from a field \mathbb{F} then H_k becomes a *vector space*.
Betti numbers

\[\beta_k = \text{rank } H_k \]

- \(\beta_0 \) is the number of *connected components*
- \(\beta_1 \) is the number of 2-dimensional holes (circles)
- \(\beta_2 \) is the number of 3-dimensional holes (voids)
- \(\ldots \)
Homology is useful

- Invariants of topological spaces
- "Homology googles" to distinguish different spaces from one another

Classical example

<table>
<thead>
<tr>
<th></th>
<th>Möbius strip</th>
<th>Torus</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>H_1</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z} \times \mathbb{Z}$</td>
</tr>
<tr>
<td>H_2</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
</tbody>
</table>
Applications

Input data

Assumption

The input data is given as a high-dimensional *point cloud*. There is some kind of *metric*, i.e. Euclidean distance.
Goal

Identify “interesting” topological structures in the data—especially relevant for time series data.
How to obtain a simplicial complex?

- Use points in point cloud as vertices of a graph
- Determine edges by *proximity*, i.e. take all vertices situated within a distance of ϵ
- This yields the *neighbourhood graph* N_ϵ
- Expand the graph afterwards

Čech complex

Topologically faithful but very hard to compute. Relies on *precise* distances.

Vietoris-Rips complex

Less expensive calculation but possibly different homotopy type, i.e. we may not “see” what we want to see.
How to choose ϵ?

Figure: $\epsilon = 0.013$

Figure: $\epsilon = 0.019$
Persistent homology

- Need to distinguish between “essential” and “non-essential” holes
- Question of “optimal” values for ϵ is a mistake

Idea

Do *all* computations for a *large range* of parameter values for ϵ. Features that *persist* over the course of varying the parameter are likely to be “real” topological features.
Figure: Default “barcode” visualization taken from [1].
 Workflow (so far)

- **Point cloud data** \mathbb{R}^n
- **Neighbourhood graph**
- **Simplicial complex** $\{\beta_0, \beta_1, \ldots, \beta_n\}$
- **Homology calculation**

Incremental/inductive expansion

Bastian Rieck (IWR)
Applied algebraic topology
September 7, 2012
Current status of my work

- Literature survey; we need to know the state of the art
- Implemented algorithms for constructing the Vietoris-Rips complex \([2]\)
- Started working on implementation of persistent homology calculation \([3]\)

Problems

- Complexes are very large
- Calculations are slow
- Not many applications out there (this may be a good thing)
Roadmap

- Even more literature survey
- Examination of some data sets—how can we profit from these methods?
- Try *approximations* to topology (sometimes we know the topology of the underlying space)
- Rather vague: Use *domain knowledge*

Possible applications

- Time-series data
- Clustered data
- ?
Robert Ghrist.
Barcodes: The persistent topology of data.

Afra Zomorodian.
Fast construction of the Vietoris-Rips complex.

Afra Zomorodian and Gunnar Carlsson.
Computing persistent homology.