


for systematically comparing the global and the community structure
of two networks is still missing in the literature.

A common approach for identifying communities in networks em-
ploys the detection of clique communities, e.g., via the clique perco-
lation method [37]. As we formally describe later in Section 3.1, a
k-clique community of a network consists of a collection of densely
interconnected groups of k individuals. Although these communities
are generally hard to calculate for high values of k, their use for identi-
fying the global structure of (edge-weighted) networks leads to several
advantages: (i) Different from other clustering techniques, clique per-
colation permits the existence of overlapping communities. This is
consistent with real-world networks, which often contain overlaps be-
tween different communities, so that an actual partition would result in
an unrealistic decomposition. (ii) A community-centered view permits
a simplified assessment of the relevance of individual nodes based on
the number of different communities they belong to. (iii) Unlike other
techniques (e.g., clustering) that strongly depend on parameters set by
the user, the decomposition in k-clique communities is parameter-free:
there are only finitely many cliques and finding a k-clique automatically
entails finding k cliques of degree k−1 because cliques are nested. In
most of the data sets presented in Section 4, we are thus able to fully
enumerate the community structure. Thanks to all these desirable prop-
erties, the use of clique communities has been recognized as a relevant
and effective tool in a large number of application domains [16]. How-
ever, some issues affect clique percolation. In most applications, the
clique degree k and the edge weight threshold w with which to perform
the network decomposition are not properly set up but just established
according to somewhat arbitrary criteria. Furthermore, the literature is
lacking (i) effective visualization tools able to manage different values
for k and w in a single view (ii) a theoretical framework for comparing
networks according to their clique community structure.

The main contribution of this paper faces these issues by developing
a tool for detecting and tracking the evolution of the clique communi-
ties of a network as both k and w vary. This has been made possible
by extending the notion of persistent homology, a topology-based
tool aimed at the characterization and the comparison of the global
structure of discretized topological spaces [12], to the framework of
clique communities of a network. This paper addresses a threefold
task: (i) to compute clique communities for different values of k and
w through a persistence-based algorithm, (ii) to visualize through an
interactive tool the clique communities of a network and their evo-
lution, (iii) to analyze the retrieved information using centrality and
comparison measures. Specifically, we propose a new algorithm for
clique community detection based on persistent homology that is able
to retrieve and track communities for any value of k and w. We define
new descriptors for comparing global structures of weighted networks.
Furthermore, we develop an interactive visualization tool by combining
several persistence-based feature detectors with the notion of nested
graphs [34]. Figure 1 depicts an instance of this tool for the well-
known character co-occurrence network of the historical novel “Les
Misérables” by Victor Hugo; please refer to Section 4.1 for more details.
Finally, we exploit the connection with persistent homology in order
to define a new centrality measure for the individuals of the network
based on the persistence of clique communities.

2 RELATED WORK

This section surveys related work in clique community detection, visu-
alization techniques for graphs, and persistent homology.

2.1 Detection of clique communities

The notion of clique communities has proven to be an effective tool
for analyzing a network with respect to its cohesive substructures.
The detection of such communities has led to fruitful applications in
numerous scientific areas such as biology [25,26], economics [22], and
social network analysis [19, 30, 36, 45]. Several methods are known
for computing these communities. The first approach is due to Palla
et al. [37], whose algorithm exploits the Bron–Kerbosch algorithm [3]
in order to enumerate all maximal cliques in the network. Next, a
clique-clique overlap matrix is built and used to easily retrieve clique

communities for any value of k. This approach constitutes the de facto
standard in clique community detection. Based on this method, the free
software CFinder has been released [1]. Various improvements to this
approach have been proposed in the literature [5, 20, 21, 29, 39].

2.2 Visual analysis of networks

Analyzing graphs and networks requires a complex interplay of visual-
ization algorithms and filtering/aggregation techniques [46]. The two
most common visualization techniques are (i) the matrix representa-
tion, in which the adjacency matrix of the network is displayed while
any edge attributes are encoded as the entries of the matrix, (ii) the
node–link diagram, in which nodes and links are shown in a planar
diagram while their positions are calculated using a variety of layout
algorithms. For generic undirected networks, node–link diagrams with
force-directed layout algorithms are shown to outperform other layout
strategies [46]. The scalability of these direct visualizations is not
always guaranteed even for static networks, which we consider in this
paper. Often, filtering or aggregation techniques are required [24]. In
this paper, we focus on topological, i.e, structural, properties of a graph.
Such properties are used in graph layout algorithms [2] or to guide user
interactions [18]. Our approach here is different in that we represent
our features in a more abstract manner. At the same time, this level of
abstraction permits us to compare networks based on their structural
similarity. In contrast to the few existing methods for this purpose, such
as ManyNets [17], our tool uses a single property of the network—the
connectivity of its clique communities—but is able to compare them
both visually and numerically (using a well-defined distance measure).

2.3 Persistent homology in network analysis

Persistent homology, the main paradigm that we employ in this pa-
per, is not a tool that was originally developed for complex network
analysis. Nonetheless, it started being frequently adopted for analyz-
ing the topological structure of a network. Specifically, applications
involve networks of various types, including collaborative [7, 48], so-
cial [27, 38, 40], sensor [11], brain [32, 33], and random [23] networks.
In all of these works, however, the analysis merely takes into account
the evolution of the connected components and cycles of a graph—to
the best of our knowledge, our work is the first to combine clique
analysis and persistent homology. Note that while persistent homology
can be used to retrieve higher-dimensional topological information, it
is not yet fully clear how to meaningfully interpret the resulting homol-
ogy classes. Despite this apparent limitation, persistent homology has
proven to be an effective tool to compare and discriminate the general
structure of complex networks or multivariate data.

3 METHODS

In this section, we define required terms, give a brief overview of
topological data analysis, and describe our algorithms.

3.1 Complex networks and clique communities

Complex network analysis concerns the study of systems representing
connections between distinct elements or actors [35, 42, 47]. Networks
have become a useful tool for representing systems from a wide variety
of research fields. Commonly, they are modeled as a graph G = (V,E),
with a set of vertices V and a set of edges E ⊆V ×V , whose elements
describe the relationships between vertices. In many applications,
vertices and edges contain additional attributes, e.g., labels and weights.

An integral part of network analysis involves the detection—and sub-
sequent analysis—of cohesive substructures of a complex network. As
previously outlined, the notions of k-cliques and k-clique communities
have proven very successful for this purpose.

Definition 1 (k-clique) We call a subset of cardinality k of V , whose
induced graph is the complete graph on k vertices, a k-clique. For
example, three vertices form a 3-clique if each one of them is connected
to the remaining two.

A clique thus describes a subset of vertices that are more closely con-
nected than their neighbors. We first define an adjacency relation
between cliques.
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Fig. 5. A persistence diagram (a) and its corresponding persistence
indicator function (b).
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Fig. 6. Persistence indicator functions (a) and their histogram (b) for the
“Les Misérables” co-occurrence network.

we first discretize the domain of the functions into uniformly-spaced
bins. For each k and each bin, we now calculate max1D , i.e., the
maximum amount of active topological features in the bin. This results
in a “band” in which the color indicates the maximum value of 1D . By
stacking these histograms, we obtain a visual summary of the clique
community activity of a weighted network. Figure 6 demonstrates
this for a set of persistence indicator functions of the “Les Misérables”
co-occurrence network. The glyph is also included in our interactive
tool (see Figure 1 or the accompanying video) in order to provide an
overview of interesting thresholds. The glyph shows that most of the
activity concentrates on very high thresholds, i.e., ε ∈ [24,32], in the
network. Only the 2-cliques, depicted in the lowest band of the glyph,
exhibit a non-zero number of clique communities for lower thresholds.

3.5 Clique community centrality

Another important issue in the analysis of complex networks is the as-
sessment of the (relative) importance of a given node. For this purpose,
multiple centrality measures are known in the literature. In the context
of our work, the cross-clique connectivity [14] is highly relevant. The
cross-clique connectivity of a vertex v is the number of cliques the
vertex is a part of. We can extend this definition to clique communities
and define the clique community centrality of a vertex v to be

Γc(v) := ∑
v∈C

pers(C), (9)

where C refers to all clique communities the vertex is a part of. By
measuring the persistence of every clique community, we are automati-
cally taking into account the relevance of a particular vertex: vertices
that participate in many clique communities of low persistence will be
assigned a lower centrality value than vertices that participate in few
clique communities of high persistence.

To demonstrate the utility of our measure, we briefly compare it with
existing centrality measures on the “Les Misérables” co-occurrence
network, which we shall analyze in more detail in Section 4.1. Using
different centrality measures, we extracted the five most central nodes
of the network. Table 1 shows the results. Since the utility of a centrality
measure is application-dependent [31], there is no clear “best” measure.
All measures are capable of detecting the main character, Valjean, for
example. The short ranking serves to elucidate some properties of our
measure, though: (i) Nodes with a high degree will not automatically be

BC CC EC CCC

Valjean Valjean Gavroche Valjean
Myriel Marius Valjean Gavroche
Gavroche Javert Enjolras Fantine
Marius Thénardier Marius Marius
Fantine Gavroche Bossuet Enjolras

Table 1. The five most central characters for the “Les Misérables” co-
occurrence network, ranked by different centrality measures (between-
ness centrality, closeness centrality, eigenvector centrality, and our clique
community centrality).

Data set Cliques Time

Les Misérables 2922 0.09 s
Shakespeare (Antony & Cleopatra) 53399 1.66 s
Brain 126526 4.38 s

Collaboration network (1999) 1052701 52.86 s
Collaboration network (2003) 2965703 185.32 s
Collaboration network (2005) 6530308 537.16 s

Table 2. Processing times (including centrality calculations) for several of
the analyzed networks.

considered to be more important: Myriel (a character with a high degree
whose connections do not form cliques) hence does not appear in the
list. (ii) Since centrality is calculated over all k-clique communities
for all k, our measure is capable of assigning a larger importance to
“key players” of a community, i.e., nodes that occur in multiple clique
communities for different values of k. Thus, Enjolras, the leader of
a group of revolutionary students, is assigned a slightly larger clique
community centrality value than other members (e.g., Bossuet) of the
revolutionary group (whose other members are not shown in the table).
In subsequent sections, we will use the centrality values in order to
analyze changes in network structure.

3.6 Implementation & technical details

Our implementation uses C++ and is made publicly available (among
other algorithms) within Aleph1, an open-source library for persistent
homology. We first calculate all cliques up to a maximum threshold for
k using an incremental algorithm [49]. The result is a simplicial com-
plex, i.e., a generalization of a graph whose elements, called simplices,
correspond to the retrieved cliques. We extract the k-clique connectivity
graph by traversing all simplices of the complex and store their co-faces
in a map, from which we finally extract all edges of the graph. This
extraction step is currently performed independently for every k and
not yet heavily optimized. Table 2 shows the performance of our algo-
rithm on a desktop machine (Intel Core i7-6700K, 64 GiB RAM). The
calculation time includes centrality measure calculations, making them
faster than traditional centrality measures such as betweenness central-
ity, whose calculation alone takes several hours for the collaboration
networks.

4 CASE STUDIES

In the following, we exemplify the use of clique community persistence
by analyzing several networks. Our method is highly generic and may
be applied to any weighted network, provided the notion of cliques is
useful for the particular application scenario.

4.1 “Les Misérables” co-occurrence network

This network describes co-occurrences between characters in Victor
Hugo’s novel “Les Misérables”. The edge weights correspond to the
number of co-occurrences between two characters. Consequently, we
have to invert the weights because we consider edge weights to corre-
spond to proximity. The network is very small, comprising 77 nodes

1https://github.com/Submanifold/Aleph





(a) Wasserstein distance (b) L2 distance

Fig. 8. Distances matrices for network dissimilarity measures. The
Wasserstein distance (left) is a well-established topological dissimilarity
measure. Our histogram distance (right) produces virtually identical
results at a fraction of the calculation complexity.

persistence diagrams of all plays, i.e.,

Wp(a,b) =

(

∑
k

inf
ηk : Da,k→Db,k

∑
x∈Da,k

‖x−ηk(x)‖
p
∞

)
1
p

, (10)

where a and b refer to the individual persistence diagrams of each
network, and k ranges over the clique community degrees. We also
compute the L2 distance between the discretized persistence indicator
functions (with 15 uniformly-spaced bins). This is akin to calculating a
distance between histograms. Figure 8 depicts the resulting distance
matrices. The patterns shown in both matrices are virtually identical.
A numerical analysis shows that the matrices are highly-correlated
with Pearson’s correlation coefficient R2 ≈ 0.96. This means distances
measured by the Wasserstein distance and distances measured by the
L2 distance are related by a linear transformation. Other numerical
experiments (please refer to the supplementary materials for more
details) confirm the relationship between the two measures. We may
thus be confident that the L2 distance suffices for capturing structural
dissimilarities between networks.

4.2.2 Structural differences between groups of plays

For our first analysis, we focus on structural differences between groups
of plays. We want to check whether the community structures typically
found in comedies differs from, say, tragedies. In order to simplify
the subsequent comparison, we assume that the weights are scaled
from [0,1]. We now calculate all clique community persistence dia-
grams and convert them to their persistence indicator function. Follow-
ing this, we calculate the mean persistence indicator function for every
value of k. Last, we convert these functions into 2D histograms with
n = 15 bins. This yields a mean 2D histogram that displays the amount
of clique community activity for every threshold and every k. Figure 9
depicts the results. At first glance, the 2D histograms appear to be very
similar: all histograms display an elongated structure indicating that
more communities are merged at higher thresholds. A closer inspection
shows that the mean 2D histogram for comedies is different. It has a
larger amount of clique community activity for small values of k than
either tragedies or histories. Furthermore, there is less activity for large
values of k, indicating that the number of connected characters tends to
be smaller on average. The activity for smaller values of k is caused
by a higher number of subplots, or even “plays with a play”, which are
often a feature of Shakespeare’s comedies.

4.2.3 Structural differences between all plays

As a second step, we demonstrate how our method permits a com-
parison of structural differences between all networks. In previous
work [40], the authors used an embedding based on the Wasserstein dis-
tance between the persistence diagrams corresponding to a play. Only
zero-dimensional and one-dimensional persistent homology was taken
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Fig. 9. Mean histograms for Shakespeare’s plays, grouped according to
their categorization.

Pericles

The Winter’s Tale

Cymbeline

Comedy

Tragedy

History

Fig. 10. An embedding of Shakespeare’s plays according to the his-
togram distance. We do not show all labels due to layout reasons.

into account, though, whereas our method includes higher-dimensional
connectivity information in the form of cliques.

Figure 10 depicts an embedding based on the L2 distance, which we
calculated using multidimensional scaling. Colors show the category of
a play. We can see that most comedies (yellow) are structurally similar,
so they form a cluster. Histories and tragedies, on the other hand,
exhibit no cluster structure because they are structurally too different.
Similar observations were made in previous work [40]. The interesting
comedies are those that are remote from the cluster center because their
structure is somewhat atypical. Here, we have marked three plays that
are typically considered to be problematic by scholars: in PERICLES,
for example, Shakespeare was only a co-author of the play, which may
be the reason why its line-up of characters is so different from other
comedies. The other two highlighted comedies are also special: both
CYMBELINE and THE WINTER’S TALE feature a larger number of
clique communities with high persistence values.

In summary, we showed how our method can be used to obtain
embeddings of the structural similarity between different networks.
Our histogram-based distance measure is fast and easy to calculate,
while maintaining important information.

4.3 Brain networks

The connectivity of the human brain—usually referred to as the hu-
man connectome—is a fundamental object of study in neurobiology
research [44]. Of particular interest to researchers is the identifica-
tion of changes in brain connectivity when certain areas are removed:
how is the transfer of signals impaired by this change? This question
is highly relevant for improving our understanding of diseases such
as depression [28] or multiple sclerosis [43]. Usually, differences in
networks are measured using graph-theoretic measures [4] or persis-
tent homology based on connected components [32, 33]. Previous
work [41] already showed that brain activity exhibits a community
structure, whose analysis sheds light on neurological concepts such as
brain function. Our method is the first approach that permits a multi-
scale analysis and comparison based on these community structures.
It is therefore an extension or generalization of approaches based on
connected components.
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Fig. 15. Histograms for the “Condensed matter” co-authorship network.
The number of active clique communities hardly differs between the three
networks, making it very hard to distinguish them.

shows histograms and kernel density estimates of the clique commu-
nity centrality values. Here, the 1999 data is markedly different from
the two other time steps: it has fewer centrality values (which is to
be expected as its size is smaller) and they are distributed differently.
Centrality values between 5 and 10 are more equally distributed than
in the other years. The mean centrality increases from 6.55 in 1999 to
7.44 in 2003, and falls back to 7.25 in 2005. This is caused by an influx
of nodes with lower centrality values. These correspond to researchers
that are not (yet) well-connected. The mean centrality value of new
researchers, i.e., nodes do not occur in the data set for a previous year,
is 4.01 for the 2003 data, while it is 5.345 for the 2005 data. The
connectivity of newcomers to the network thus increases. We also find
that the centrality of known nodes, i.e., nodes that are available for all
three time steps, stop increasing—the mean increase from 1999 to 2003
is 1.41, while the mean increase from 2003 to 2005 is only 0.16. The
community structure appears to be saturated after a certain point.

The centrality values can also be used to filter away all but the
most central of all nodes. The results of this are shown in Figure 16,
right. Nodes are colored according to their degree, while their size
corresponds to their clique community centrality. The graph is thus
reduced to the “key players” of the network and we can see how they
change over time. For instance, we observe that Paul C. Canfield,
whose research group was founded in 1992, improved his collaboration
network from 1999 to 2003, thus starting to appear as a key player in
the 2003 data. It is also interesting to see that even the key players
become more interconnected over time. The filtered graph for the 2005
data is almost a single connected component, while earlier years do not
contain direct connections between the key players.

In summary, this example demonstrates the utility of clique commu-
nity centrality: its distribution can be analyzed to draw assumptions
about the connectivity of a network. Moreover, it can act as simple
filter—and thereby permit the analysis of graphs for which traditional
visualization techniques are not readily applicable.

5 CONCLUSION

We developed an extension of persistent homology to the analysis of
clique communities in weighted networks. In contrast to earlier meth-
ods, our algorithm is capable of analyzing the connectivity relations for
all clique degrees and all weight thresholds simultaneously. We also
presented different visualizations for showing information about clique
communities and demonstrated their utility on various data sets.

For future work, we envision using our method to compress a graph,
e.g., by removing edges that are irrelevant for the clique community
structure. Furthermore, we want to augment our method so that it can
handle time-varying networks in which connections between individual
nodes are permitted to disappear at certain thresholds. This requires
changes to the underlying model for clique community persistence,
though. We also want to consider the nesting relationships between
k-clique communities and (k + 1)-clique communities. So far, our
method performs the analysis for a single k only, but it is possible
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Fig. 16. Histograms (left, with density estimates) of the clique community
centrality values for different time steps of the condensed matter collabo-
ration networks. Non-central nodes have been removed in order to make
the force-directed graph layout (right) less cluttered.

that a given (k+1)-clique community completely “absorbs” a k-clique
community. An extension to this case would support the understanding
of how communities merge.
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Supplementary Materials
Clique Community Persistence: A Topological Visual Analysis Approach for Complex Networks

Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte

In these supplementary materials, we report some experi-

mental results pertaining to the persistence indicator func-

tion (PIF) that we introduced in the paper.

We already noted in the paper that the PIF is not neces-

sarily an injective function. Multiple persistence diagrams

may map to the same PIF. However, we claim that the PIF

is nonetheless a useful summary statistic of a persistence

diagram because it can be obtained easily and retains most

of the important features of the diagram. Moreover, the

Lp distance that we defined for comparing two PIFs can

be calculated much faster than the Wasserstein distance: it

only takes a linear amount time, while even approximating

Wasserstein distance calculations [4] are at the very least

of the order O(n1.6). In the following, we report experi-

mental results that compare the behavior of PIFs and the

Wasserstein distance on several synthetic data sets.

1 Methodology

In order to analyze the suitability of PIFs for providing

distances, we need to analyze the correlation between dis-

tances measured by PIFs and distances measured using

the Wasserstein distance. If both distances turn out to be

uncorrelated, the PIF distance is unsuitable for topologi-

cal data analysis. There are multiple approaches available

for measuring the correlation (or similarity) between two

distance matrices. We briefly comment on some of them.

Pearson’s correlation. The most common way of com-

paring two sets of measurements involves calculating

their correlation coefficient R2. This coefficient measures

whether the two measurements are correlated. However,

this correlation measure is only capable of assessing linear

dependencies. If one set of measurements X is related to

another one Y by some non-linear function, for example

via x = cos(y), Pearson’s correlation coefficient will not

be able to describe this relationship.

Energy distance. Motivated by the shortcomings of

Pearson’s correlation, Székely and Rizzo [7] defined the

energy distance, which measures the distance between two

distributions. The energy distance is capable of detecting

even complex non-linear dependencies, making it a robust

choice for many tasks in multivariate data analysis [5].

Mantel test. The Mantel test [6] is a classical statisti-

cal test from ecology/geology that assesses the correlation

of two distance matrices. It assesses to what extent dis-

tances in the first matrix are similar to distances in the

second matrix. While the efficacy of the test is still an

issue of debate [3], we use it here because the results can

be interpreted easily—they are reported in the form of a

correlation coefficient between [−1, 1], just as for R2.

2 Random networks

The first experiment checks to what extent PIFs may dis-

cern different groups of randomly-wired networks from

each other. More precisely, we use a novel algorithm from

complex network analysis [2] to generate random weighted

networks with different linkage probabilities p. A typical

run of this experiment looks as follows:

1. Create m = 500 random weighted networks with

n = 200 vertices each and a linkage probability of

either q = 0.1 or q = 0.2.

2. Normalize weights in all networks to [0, 1] in order

to make them comparable.
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3. Calculate clique persistence diagrams as described in

our paper. We calculate clique persistence diagrams

without a restriction to the k parameter—we want to

include all possible cliques.

4. Use the Wasserstein distance (with exponents p = 1
and p = 2) to obtain a distance matrix.

5. Repeat the previous step for the persistence indicator

functions (again with exponents p = 1 and p = 2).

6. Analyze the correlation between the two distance

matrices, both quantitatively and qualitatively. For the

quantitative analysis, we use the correlation measures

as defined above. For the qualitative analysis, we take

a look at embeddings of the data.

What is the expected outcome of this analysis? First of all,

we expect two groups of networks to be identifiable by both

distance measures. Since a linkage probability of q = 0.1
gives rise to extremely different structures (e.g., cliques)

than q = 0.2, the Wasserstein distance should be capable

of discriminating between both groups of networks.

Qualitative analysis. Figure 1 depicts distance matri-

ces for this experiment. We can see that two groups of

networks are visible in both matrices, as indicated by the

blocks of different colors. Note that there are almost no

visible differences between the two distance measures for

p = 1. Another qualitative comparison is shown in Fig-

ure 2, where we calculated embeddings of the distance

matrices using metric multidimensional scaling. Again,

both embeddings exhibit two easily-separable groups of

networks. For the PIF distance, we observe that a distortion

takes place: the two groups of networks are well-separated

by the Wasserstein distance with p = 2, forming two

groups of the same shape. This shape information gets lost

in the PIF embedding because PIFs are only approxima-

tions to persistence diagrams.

Quantitative analysis. Finally, Table 1 shows the values

of the correlation measures for the two distances matrices.

We observe that all measures show that the matrices are

highly-correlated. Notice that we only calculated corre-

lations between distances with the same exponent, e.g.,

we compared the Wasserstein distance and the persistence

indicator function distance with p = 1. It is interesting to

(a) Wasserstein distance, p = 1 (b) PIF, p = 1

(c) Wasserstein distance, p = 2 (d) PIF, p = 2

Figure 1: Distances matrices for the random graphs ex-

periment. A clear group structure is visible for both sets

of matrices.

(a) Wasserstein distance, p = 1 (b) PIF, p = 1

(c) Wasserstein distance, p = 2 (d) PIF, p = 2

Figure 2: Embeddings of the distance matrices for the ran-

dom graphs experiment. Each point represents a network

with a certain linkage probability. We can see that all net-

works with q = 0.1 (red) can easily be distinguished from

networks with q = 0.2 (blue) by both distance measures.

2



Measure p = 1 p = 2

R2 0.97 0.96
Energy distance 0.99 0.99
Mantel 0.97 0.98

Table 1: Correlations for the random graphs distance ma-

trices. We compared PIF distances with the Wasserstein

distance for two different exponents p.

note that the energy distance shows the highest correlation

value because it is also suitable for non-linear dependen-

cies.

3 Torus vs. sphere

As a second set of experiments, we check whether PIFs

may be used to distinguish random samples of different

manifolds from each other. More precisely, we check

whether it is possible to discern a torus from a sphere.

To this end, we use an algorithm developed by Diaconis

et al. [1] to obtain uniformly-distributed samples from

manifolds. We then perform the following steps:

1. Sample n = 500 points from a torus with a major

radius of R = 0.25 and a minor radius of r = 0.50.

Repeat this 50 times.

2. Sample the same number of points from a sphere

with the same surface area (in order to ensure that the

scales of both data sets are comparable). Repeat this

50 times.

3. For both samples, calculate persistent homology in

dimension 1.

We then follow the steps from the previous experiment

to obtain distance matrices calculated using the Wasser-

stein distance as well as matrices calculated using the Lp

distance between PIFs.

Qualitative analysis. Figure 3 depicts the results of this

experiment. We again observe that both sets of matrices

display a block structure. This block structure appears

to be virtually identical for p = 1, but becomes different

for p = 2. Nonetheless, both sets of matrices clearly

(a) Wasserstein distance, p = 1 (b) PIF distance, p = 1

(c) Wasserstein distance, p = 2 (d) PIF distance, p = 2

Figure 3: Torus vs. sphere: distances matrices of the

Wasserstein distance and the persistence indicator function

distance for different exponents.

(a) Wasserstein distance, p = 1 (b) PIF distance, p = 1

(c) Wasserstein distance, p = 2 (d) PIF distance, p = 2

Figure 4: Embeddings of the distance matrices for the

random samples (torus vs. sphere) experiment. Torus sam-

ples (red) can be distinguished from sphere samples (blue).
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Measure p = 1 p = 2

R2 0.94 0.80
Energy distance 0.99 0.97
Mantel 0.95 0.89

Table 2: Correlations for the random graphs distance ma-

trices. We compared PIF distances with the Wasserstein

distance for two different exponents p.

exhibit the two groups used in the experiment. This is also

evidenced in the embeddings, which are shown in Figure 4:

both types of embeddings show that separating random

samples from a torus from those of a sphere is possible.

Note that the fact that both groups are not as well-separated

as in the previous experiment is a consequence of the

way we performed this experiment. Here, we only used

1-dimensional persistent homology. If we also include

additional information from dimension 2, the separation

will be more evident.

Quantitative analysis. The numerical experiments in

Table 2 also exhibit smaller correlation values than for the

previous experiment. In particular, there are now larger

differences between exponents p = 1 and p = 2. With

R2 = 0.80, the second Wasserstein distance and the PIF

distance are still highly-correlated, though. The energy

distance indicates that the two distance measures are still

very dependent, albeit in a non-linear manner. This shows

that distances based on PIFs are useful even though the

PIF is not an injective transformation in general.

4 Conclusion

Experiments demonstrate that the PIF is a useful summary

statistic for persistence diagrams. We plan on investigating

more properties of the PIF in future work.
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