
























Measure p = 1 p = 2

R2 0.97 0.96
Energy distance 0.99 0.99
Mantel 0.97 0.98

Table 1: Correlations for the random graphs distance ma-

trices. We compared PIF distances with the Wasserstein

distance for two different exponents p.

note that the energy distance shows the highest correlation

value because it is also suitable for non-linear dependen-

cies.

3 Torus vs. sphere

As a second set of experiments, we check whether PIFs

may be used to distinguish random samples of different

manifolds from each other. More precisely, we check

whether it is possible to discern a torus from a sphere.

To this end, we use an algorithm developed by Diaconis

et al. [1] to obtain uniformly-distributed samples from

manifolds. We then perform the following steps:

1. Sample n = 500 points from a torus with a major

radius of R = 0.25 and a minor radius of r = 0.50.

Repeat this 50 times.

2. Sample the same number of points from a sphere

with the same surface area (in order to ensure that the

scales of both data sets are comparable). Repeat this

50 times.

3. For both samples, calculate persistent homology in

dimension 1.

We then follow the steps from the previous experiment

to obtain distance matrices calculated using the Wasser-

stein distance as well as matrices calculated using the Lp

distance between PIFs.

Qualitative analysis. Figure 3 depicts the results of this

experiment. We again observe that both sets of matrices

display a block structure. This block structure appears

to be virtually identical for p = 1, but becomes different

for p = 2. Nonetheless, both sets of matrices clearly

(a) Wasserstein distance, p = 1 (b) PIF distance, p = 1

(c) Wasserstein distance, p = 2 (d) PIF distance, p = 2

Figure 3: Torus vs. sphere: distances matrices of the

Wasserstein distance and the persistence indicator function

distance for different exponents.

(a) Wasserstein distance, p = 1 (b) PIF distance, p = 1

(c) Wasserstein distance, p = 2 (d) PIF distance, p = 2

Figure 4: Embeddings of the distance matrices for the

random samples (torus vs. sphere) experiment. Torus sam-

ples (red) can be distinguished from sphere samples (blue).
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Measure p = 1 p = 2

R2 0.94 0.80
Energy distance 0.99 0.97
Mantel 0.95 0.89

Table 2: Correlations for the random graphs distance ma-

trices. We compared PIF distances with the Wasserstein

distance for two different exponents p.

exhibit the two groups used in the experiment. This is also

evidenced in the embeddings, which are shown in Figure 4:

both types of embeddings show that separating random

samples from a torus from those of a sphere is possible.

Note that the fact that both groups are not as well-separated

as in the previous experiment is a consequence of the

way we performed this experiment. Here, we only used

1-dimensional persistent homology. If we also include

additional information from dimension 2, the separation

will be more evident.

Quantitative analysis. The numerical experiments in

Table 2 also exhibit smaller correlation values than for the

previous experiment. In particular, there are now larger

differences between exponents p = 1 and p = 2. With

R2 = 0.80, the second Wasserstein distance and the PIF

distance are still highly-correlated, though. The energy

distance indicates that the two distance measures are still

very dependent, albeit in a non-linear manner. This shows

that distances based on PIFs are useful even though the

PIF is not an injective transformation in general.

4 Conclusion

Experiments demonstrate that the PIF is a useful summary

statistic for persistence diagrams. We plan on investigating

more properties of the PIF in future work.
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