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ABSTRACT

Dimensionality reduction (DR) methods are commonly used in
data science to turn high-dimensional data into 2D representations.
Since data sets contain different structural features that need to be
preserved by this process, there is a multitude of DR methods, each
geared towards preserving a separate aspect. This makes choosing
a suitable algorithm for a given data set a challenging task. In this
paper, we propose a comparative analysis of DR methods based
on how well their embedding preserves structural features in the
high-dimensional point cloud. To this end, we develop a set of data
descriptors that assess local and global structural features of point
clouds. These features are computed for the high-D point cloud
and the 2D embedding. We then use persistent homology to ro-
bustly compare the feature functions. An interactive landscape of
the data descriptors, based on their topological differences, permits
visually exploring the embeddings and their quality. We demon-
strate the utility of our workflow by analysing multiple embeddings
of high-dimensional data sets from real-world applications.

Index Terms: Computer Graphics [I.3.6]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

Dimensionality reduction (DR) methods are an indispensable tool
for analysing the high-dimensional data sets that commonly occur
in data science. These methods are often used to perform explorat-
ory data analysis, intending to gain knowledge about the underly-
ing data distribution. Data science practitioners often assume that
their data are sampled from an unknown manifold M. Algorithms
such as principal component analysis aim to “learn” a simple model
for M. This model may then not only be used for visualization but
also for data compression. The challenges here are twofold: First, it
is not clear how to choose a “suitable” DR algorithm because such a
choice requires knowledge about M. Some algorithms only work if
M is convex, for example. Second, even if a suitable algorithm has
been found, most DR algorithms have additional parameters (such
as a neighbourhood size) that further affect the results.

There are many different DR quality measures that aim to
provide guidance for choosing a DR method. These measures usu-
ally judge certain aspects of an embedding, such as errors in dis-
tances between the high-dimensional data and the embedded data;
see Lee and Verleysen [14] for a survey. While DR quality meas-
ures can be used to compare the performance of a single DR method
on a data set, they are often optimized for a certain method only and
thus may not be readily employed to compare different DR meth-
ods with each other. For example, multidimensional scaling (MDS)
is optimizing the stress measure (the square root of the squared dif-
ference between distances in the high-dimensional space and in the
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low-dimensional space). If we were to use this measure to choose a
DR method, methods that embed data into their own coordinate sys-
tem (thereby changing Euclidean distances by e.g. a constant factor)
would inevitably be considered less suitable than MDS. While this
problem is circumvented by more general quality measures such
as the co-ranking matrix [14], the values for different DR meth-
ods remain incomparable because a well-defined framework for the
comparison is lacking—especially when users are interested in pre-
serving multiple aspects of their data.

In the following, we present a method for approaching the two
challenges outlined above. Our method is based on the computa-
tion of descriptors on the data. A descriptor is a scalar function that
permits the quantification of a single property of the data, such as
its density. Given numerous descriptors on a data set, we compare
their topological differences (using a well-defined, stable metric) on
the original data and on a set of embeddings that are obtained via
different DR methods (or the same DR method with varying para-
meters). In contrast to comparing data descriptors using function
space distances such as the Lp-distance, topological behaviour has
been shown to be more robust against perturbations and transform-
ations (e.g. translations). Furthermore, especially in a data science
context, topological data analysis is known to be able to capture
characteristics of a data set that often elude other methods [17]. In
summary, our contributions are:

• We present a set of data descriptors that are geared towards
analysing multivariate data sets.

• We develop a workflow based on persistent homology for es-
timating the quality of DR methods by comparing the topo-
logy of structural descriptors.

• We provide data descriptor landscapes, an easy-to-
understand interactive visualization of the quality of DR
methods on data sets.

• We demonstrate our method on real-world data sets (with
state-of-the-art DR algorithms) and show how it can support
users in choosing a suitable DR method.

2 RELATED WORK

Dimensionality reduction methods: DR methods are
broadly categorized as either linear or non-linear. Principal com-
ponent analysis [13, Chapter 8] (PCA), factor analysis [13, Chapter
9] (FA), and multidimensional scaling [13, pp. 706–715] (MDS)
are three common linear DR methods. We will now briefly expand
on the non-linear methods that we use throughout this paper. Please
refer to Gisbrecht and Hammer [11] for more a detailed overview
of these non-linear dimensionality reduction methods.

Isomap is an early non-linear DR method and was shown to out-
perform linear methods on some data sets. It incorporates the idea
that the approximation of geodesic distances through neighbour-
hood graphs can improve the way an algorithm handles the intrinsic
geometry of a data set. Locally-linear embedding (LLE) uses a dif-
ferent approach by considering a data set to consist of linear patches
at a local level and piecing them together for a global embedding.
LLE also employs neighbourhood graphs. Hessian LLE (HLLE) is
an improved variant for high-dimensional manifolds at the expense
of higher computational costs. A similar idea involves the approx-



imation of tangent hyperplanes, as used by the local tangent space
alignment (LTSA) algorithm. Finally, stochastic methods can also
be employed to achieve better runtime performance: The stochastic
proximity embedding (SPE) algorithm of Agrafiotis [2] scales lin-
early with the size of the input data, instead of quadratically (or
even worse).

Dimensionality reduction quality analysis: Lewis et al. [15]
showed that non-experts generally disagree when having to choose
a suitable DR algorithm, thereby indicating the need for quality
metrics and quality analysis. The challenge of choosing a DR
method hence remains an active research topic. Sedlmair et al. [21]
recently showed that 2D scatterplots are the most useful tool for
visually comparing the output of different DR methods, which is
why we focus solely on 2D embeddings in this paper. Our method
is sufficiently general to support embeddings of arbitrary dimen-
sionality, though. Tatu et al. [23] analysed visual quality metrics
under aspects of human perception and discovered that users are
looking for structural variations of the data, e.g. its apparent density
and the distribution of points. Bertini et al. [3] gave a concise over-
view and systemization of quality metrics used in high-dimensional
data visualization. Our work presented in this paper falls into the
“Complex patterns” category because we measure quality by com-
paring functions on data sets. Pagliosa et al. [16] developed an
interactive visualization for multidimensional projections, simpli-
fying their exploration and interpolation. Our approach is more
general and not restricted to DR algorithms that are projections in
the mathematical sense.

Topological data analysis & data science In a previous pub-
lication [19], we showed how to use persistent homology to meas-
ure the preservation of a single property (such as the density) on
multiple embeddings of a high-dimensional data set. We further-
more analysed the agreement [18] of quality measures on a single
embedding in order to identify regions where errors are distributed
similarly. The method presented in this paper is capable of com-
paring multiple embeddings under multiple aspects. It is meant to
be applied at the end of a data science pipeline, aiming to augment
the knowledge discovery process in data science. In contrast, other
methods employ topological techniques very successfully for pre-
processing [1] or even directly as a feature descriptor for machine
learning [17].

3 METHODS

Given a high-dimensional data set and multiple embeddings ob-
tained by DR methods, we aim to find out which aspects of a data
set are preserved by a given embedding. Since the original data
set and the embeddings exist in different metric spaces, we cannot
compare them directly. We thus propose calculating a set of scalar
descriptors on the data and its embeddings. Each data descriptor
focuses on a single, well-defined aspect such as density. To per-
mit a stable quantification of the differences between an embedding
and the original data set, we compare the topological behaviour of
the descriptors using persistent homology. In the next sections, we
will first motivate three data descriptors. Following this, we will
give a concise exposition of concepts from computational topology
and explain how to calculate topological distances using persistent
homology. We will end this section with a brief comparison of to-
pological distances and distances in function spaces, showing why
topological distances are preferable in the context of data science.

3.1 Data descriptors
The underlying idea of our method is to describe a high-
dimensional data set using the behaviour of functions defined on it,
i.e. a “fingerprinting” approach. This is inspired by previous work
of Biasotti et al. [4], who showed the advantages of using auxiliary
functions for shape analysis. We will use k subsequently to refer

to the data descriptor neighbourhood size because DR methods use
the same variable by tradition. However, when mentioning a DR
method and a k-value, it refers to the neighbourhood size of the
method and not a data descriptor.

Density: Sedlmair et al. [21] previously showed that humans
tend to focus on the variations of density in a scatterplot. We thus
want this salient property of the data to be preserved and use the dis-
tance to measure density estimator introduced by Chazal et al. [7].
Using the k nearest neighbours {n1, . . . ,nk} of a data point x, the

descriptor is defined as f1(x) =−1/k
√

∑
k
i=1 d2(x,ni), where d(·, ·)

denotes a distance measure such as the Euclidean distance.

Eccentricity: The eccentricity of a data point is a measure of
its centrality. Carlsson [5] showed its utility for high-dimensional
data analysis. The descriptor is defined as f2(x) = 1/n∑y d(x,y)2,
where y ranges over all n input data points and d(·, ·) again denotes
a distance measure. Data points with high values are located more
on the periphery of a data set, while a data point that minimizes the
equation above may be thought of as a “centre”.

Local linearity: Linear structures are a common occurrence in
scientific data sets, laying the foundation for the LLE algorithm,
for example. We define a new data descriptor that is capable of
judging the linearity of a neighbourhood of points. For a point x in
the data set and its k nearest neighbours, we build a sample k× k
covariance matrix Σ [13, pp. 121–123]. We now diagonalize Σ, i.e.
Σ = PDP−1, where D is a k× k diagonal matrix containing the ei-
genvalues {λ1, . . . ,λk} of Σ and the columns of P contain the eigen-
vectors. Without loss of generality, we assume that λ1 ≥ ·· · ≥ λk.
The quantity f3(x) = λ1/(λ1 + · · ·+λk)∈ [0,1] now measures how
much of the variance of the data points is explained if we only use
a linear subspace, spanned by a single eigenvector, to describe the
data locally. High values indicate that the data are locally linear.

Choosing a neighbourhood parameter k: The density
descriptor and the local linearity descriptor both require a neigh-
bourhood parameter k that specifies how many neighbouring points
are taken into account. Choosing k requires defining the size of
regions that are to be considered significant. This depends on the
amount of data points. The data sets analysed in this paper com-
prise around 1000 points. Here, we choose k ∈ [10,20], meaning
that at least 10–20 points are required for a structure to be con-
sidered dense or linear. We calculate the data descriptors for every
value of k and use their combined mean in the subsequent analysis.
If the amount of input data becomes significantly larger, k needs
to be increased. Note that in contrast to the k parameter for DR
methods (which also defines the size of neighbourhoods), the data
descriptors are much more stable [7]; increasing k only results in
smoother distributions of the data descriptor values.

3.2 Persistent homology
Persistent homology is a method for summarizing the behaviour
of a scalar function on a data set by its topological features. To-
pological features arise from the connectivity information of the
given function on the data and comprise, for example, connected
components (dimension 0), tunnels (dimension 1), and voids (di-
mension 2). We will first discuss the persistent homology of a
1-dimensional function over R before we briefly cover persistent
homology in higher dimensions. The reader is referred to Edels-
brunner and Harer [10] for a more concise introduction.

1-dimensional data: Given a scalar function f : D⊆R→R,
persistent homology describes the connectivity changes in its sub-
level sets, i.e. sets of the form L−c ( f ,c) = {x ∈D | f (x)≤ c}. Start-
ing from the smallest function value of f , we iteratively sweep over
all function values and keep track of the number of connected com-
ponents in the graph of the function. The number of connected
components only changes at local extrema. More precisely, a local
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Figure 1: Persistent homology for 1-dimensional data. Each
minimum-maximum pair in the data (left) creates a point in the per-
sistence diagram (right). The topological distance between the ori-
ginal function (white) and the perturbed function (blue) is very small.

minimum creates a new connected component, while a local max-
imum causes two connected components to be merged. We can
summarize this information by keeping track of the function values
at local extrema. At a local maximum with function value d, we
have two connected components belonging to two different local
minima with function values c and c′, respectively. Without loss of
generality, we assume that c′ ≤ c. We now merge the component
c into the component c′ and store the tuple (c,d) to summarize the
merge. The resulting set of tuples in R2 forms the persistence dia-
gram D f of f (Fig. 1). The quantity |c− d| of a point (c,d) in D f
is called its persistence. It is commonly treated as a significance
measure; large values correspond to stable, significant components
that get merged at a very late stage of the sweep, while points near
the diagonal are usually seen as an indicator of noise in the data.

High-dimensional data: The example above is a simpli-
fied situation because the connectivity of f on its domain D is
known implicitly. The lack of connectivity information in high-
dimensional data thus necessitates an auxiliary construction. Given
a metric such as the Euclidean distance and a distance threshold ε ,
we calculate the Rips graph Rε of the data set. This graph has a
vertex for every point in the data set and an edge between vertices u
and v if the distance between their corresponding points is less than
or equal to the distance threshold. The threshold ε controls the ap-
proximation of the connectivity information of the data set. There
are numerous heuristics for choosing ε [20]. Here, we choose the
smallest ε such that Rε has a single connected component—this
accommodates the fact that most scientific data sets do not ex-
hibit well-defined clusters, describing a single manifold structure
instead. The advantage of the Rips graph construction is that Rε

contains all Rips graphs Rε ′ for ε ′ ≤ ε . The threshold ε is thus only
a parameter for the maximum scale. Information at smaller scales
will be included without having to perform additional calculations.

After calculating Rε , we require a scalar function f , such as a
data descriptor from Sec. 3.1, for assigning vertices and edges a
scalar value. Each vertex v is assigned the value f (v), while each
edge (u,v) is assigned the value of max{ f (u), f (v)}. This weight-
ing scheme ensures that edges are only added to the graph after
both their vertices have been added. To calculate persistent homo-
logy, we sort the graph according to its edge and vertex weights
and traverse it while keeping track of its connected components
using a union-find data structure [9, pp. 561–568]. In analogy to
the 1-dimensional case, each vertex creates a new connected com-
ponent, while each edge merges two connected components. This
calculation is highly efficient: Given a data set of n points, the per-
sistent homology of Rε can be calculated in almost linear time, i.e.
O(n ·α (n)), where α (n) is less than 5 for all practical values of
n [9, pp. 573–586].

Higher-dimensional persistent homology: Calculating
higher-dimensional topological features such as tunnels and
voids requires another auxiliary data structure, the Vietoris-Rips

complex Vε [10, pp. 61–63] of the data set. Vε is a simpli-
cial complex—a higher-dimensional equivalent of a manifold
mesh—consisting of vertices (0-simplices), edges (1-simplices),
triangles (2-simplices), and their corresponding generalizations.
Briefly put, we obtain Vε by adding a k-simplex if Rε contains all
of its edges. Analogously to the weight scheme for Rε , we assign
each simplex the maximum weight of its vertices. We now use
an algorithm of Edelsbrunner and Harer [10, Chapter VII] that
partitions the simplices of Vε into positive and negative simplices.
Similar to the vertices and edges in the description above, positive
simplices create a topological feature, while negative simplices
destroy one. The result of this process is a set of persistence
diagrams for each dimension, summarizing the topological features
of the scalar function f on the data set. Calculating topological
features up to dimension k can result in a simplicial complex of
size O(nk) in the worst case. The persistent homology calculation
of this complex runs in O(m3) time, where m is the size of Vε . In
practice, linear running times are observed. Recent research [22]
also points at the possibility of stable linear-size approximations
to Vε , making high-dimensional persistent homology feasible for
even larger data sets. For the data sets in this paper, runtime is not
an issue yet—comparing 30 different DR methods takes about 7s,
which is less than the calculation of a single DR method on the
data.

3.3 Function distances in topological spaces
Persistence diagrams are an appealing summary for the behaviour
of functions on a data set because they may be compared using well-
defined, stable metrics. Given two persistence diagrams X and Y
corresponding to functions f and g, we define their qth Wasserstein
distance as

Wq(X ,Y ) =

(
inf

η : X→Y ∑
x∈X
‖x−η(x)‖q

∞

) 1
q

, (1)

where η : X→Y denotes a bijection between the point sets of X and
Y and ‖ · ‖∞ refers to the maximum distance between two points in
R2. The Wasserstein distance is defined by the minimum amount
of displacement (measured as a distance) that is required to trans-
form X into Y . This type of distance measure is very common in
e.g. computer vision. Since X and Y usually have different car-
dinalities, we permit a bijection η to map points from one persist-
ence diagram to their orthogonal projection onto the diagonal, i.e.
(x,y) 7→ 0.5(x+y,x+y). This means that (x,y) has no match in the
second persistence diagram.

Fig. 1 illustrates the Wasserstein distance. The blue and white
functions are very similar to each other (left). Their persistence dia-
grams (right) have the same prominent features. Due to the amount
of peaks in the perturbed function, there is a large amount of noise
near the diagonal. None of these points will be matched to regular
points in an optimal bijection. They are all matched to their projec-
tions onto the diagonal instead. The total cost of the Wasserstein
matching is determined by summing up the lengths of all white
edges (with weights according to the q parameter).

The Wasserstein distance between persistence diagrams has ex-
cellent stability properties in the presence of perturbations of the
data set. A stability theorem by Cohen-Steiner et al. [8] implies

Wq(X ,Y )≤C
1
q ·‖ f −g‖

1− k
q

∞ , for constants k≤ q and C that depend
on f and g as well as on their domain. Here, ‖ f −g‖∞ refers to the
Hausdorff distance between the two functions. The stability the-
orem requires that both f and g do not exhibit infinitely many small
oscillations that could make Wq(X ,Y ) arbitrarily large.

The complexity of Wq only depends on the number of points
in both persistence diagrams and not on the sampling resolution
or the dimensionality of the input data. In this paper, we will
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Figure 2: Boxplots of pairwise distances between 1-dimensional
functions. Lower values are preferable.

use the second Wasserstein distance W2 because its local costs
are calculated using the common Euclidean distance. Calculating
Wq requires finding a maximum weighted matching in a bipartite
graph [10, pp. 229–236], which has complexity of O(m3), with m
being the number of points in the larger persistence diagram. The
runtime can be drastically reduced by multi-scale approximations
of the distance [6].

When calculating higher-dimensional persistent homology of
functions f and g as outlined above, we obtain persistence dia-
grams Xd and Yd for each dimension d. The qth Wasserstein dis-
tance between all persistence diagrams is then defined as the qth
root of the sum of all individual Wasserstein distances in each di-
mension.

3.4 Function distances in metric spaces
In the setting of a metric space, the L∞ and the Lp (with p = 2) dis-
tance are commonly used to quantify the similarity between func-
tions f and g. For one-dimensional functions, these distances are
easy to compute as

d( f ,g)L∞
= ‖ f −g‖∞ = sup

x∈R
| f (x)−g(x)| (2)

and

d( f ,g)Lp =

(∫
R
| f (x)−g(x)|dx

) 1
p

, (3)

respectively. The concept generalizes to higher-dimensional do-
mains D ⊆ Rd . When D is sparse and needs to be approxim-
ated, however, costly grid approximations are required. This is
also relevant when f and g have different domains D f and Dg
with D f ∩Dg 6= /0. Here, f and g need to be interpolated on both
domains, which may quickly become prohibitive in higher dimen-
sions.

To show that the L∞ and Lp are not suitable for comparing data
descriptors, we perturbed the y-values of the function in Fig. 1.
We then calculated pairwise distances between the original func-
tion and its variants. Fig. 2 shows the corresponding boxplots (after
normalization to [0,1] in order to ensure comparability between the
different measures). We can see that the mean of the distribution
for W2 is smaller than the means of the function space distances.
Hence, W2 is able to capture similarities between the functions bet-
ter. Kolmogorov-Smirnov tests between all distance functions con-
firm that their means are significantly different. Please refer to the
supplementary materials for more details.

4 WORKFLOW

In the following, we assume that we are given a high-dimensional
unstructured point cloud P and a set of DR methods {φ1, . . . ,φn}.
We first calculate the embedding φi = φi(P) for each DR method.
We then calculate each data descriptor f j, j ∈ {1,2,3}, on each em-
bedding φi. This yields a set of function values fi j . After choosing
an appropriate value for the distance threshold ε , we calculate the
Vietoris-Rips complex Vε on the point cloud P up to the ambient
dimension of the data set. We assign each scalar function fi j as
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Figure 3: Feature vector landscape for the synthetic faces. The clus-
tering of similar DR methods shows their stability.

weights to Vε . The persistent homology of this complex results
in a set of persistence diagrams Di j that describe the topological
behaviour of the descriptor on the data. We perform the same pro-
cess (scalar function assignment plus persistent homology calcula-
tion) on the original data set, resulting in persistence diagrams D′j.

For each embedding and each descriptor, we now calculate the
Wasserstein distance W2 between the persistence diagrams D′j of
the original data set and the persistence diagrams Di j of the embed-

ding φi, mi j = W2

(
D′j,Di j

)
, and construct an n× 3 matrix M of

these distances. Entries in M contain the distance of a given data
descriptor (calculated on an embedding) to the same descriptor on
the original data. Small distances indicate that the descriptor has a
similar topology on the embedding and on the original data. This
implies that the property measured by the data descriptor has been
preserved well by the embedding.

Each row in M thus measures how well the topology of the data
descriptors is retained by the corresponding DR method. We now
perform a PCA of M in order to derive coordinates in R2. In addi-
tion, we draw star glyphs [25] to visualize the data descriptor dis-
tance values in each row. The glyphs are colour-coded by the Eu-
clidean norm of the row vector, using a sequential colour map that
ranges from white to red over orange. A large norm indicates that
the row vector contains large values for at least one data descriptor,
meaning that the embedding is incapable of preserving its topology
properly. This visualization forms the data descriptor landscape in
which each glyph represents a certain embedding and the distances
between glyphs indicate their (topological) similarity.

5 RESULTS

We envision the following strategy for using the information ob-
tained by our method: First, data scientists pick a set of DR meth-
ods and apply them to the given data set. If an algorithm has tunable
parameters, such as a neighbourhood size, it can be applied multiple
times with varied settings. Then, all data descriptors are calculated
on all the generated embeddings and the data descriptor landscape
is used to select suitable DR methods for embedding the data. This
approach is particularly useful when numerous DR methods need to
be examined with respect to their parameter stability and the simil-
arity of their embeddings. Especially in case DR is used to reduce
the amount of variables in a data set, the data descriptor landscape
helps data scientists avoid having to sift through large amounts of
auxiliary visualizations such as scatterplot matrices.

5.1 Synthetic faces
This data set was originally described by Tenenbaum et al. [24] as a
show-case for non-linear dimensionality reduction methods. It con-



sists of 698 images (64×64 pixels each) that show a 3D model of
a human head in different poses and under different lighting condi-
tions. These images are known to lie on a manifold with intrinsic
dimension 3, parametrized by two pose variables (left–right, up–
down) and one lighting variable. A suitable dimensionality reduc-
tion algorithm should reflect these variables in the embedding.

We apply our method to a set of selected DR methods (please
refer to the supplementary materials for additional visualizations of
the embeddings). All methods except PCA have a neighbourhood
parameter k which can be tuned. We vary the values of k and ap-
ply our method to the resulting embeddings, using ε = 10.5. The
resulting landscape of DR methods is shown in Fig. 3.

We first show how the similarity of embeddings is expressed in
the distances within the data descriptor landscape. To this end, we
focus on the dense region in the middle of the landscape. It is
dominated by instances of HLLE (marked with arrows) and LTSA.
Fig. 4 shows some of the corresponding embeddings. Their spa-
tial proximity also indicates that both DR methods are very stable
with respect to their neighbourhood parameter. Their glyphs indic-
ate that the largest errors occur in the density and the eccentricity
descriptor. Density and distance relations in both types of embed-
dings are thus not trustworthy. By contrast, the Isomap algorithm
is decidedly not stable on this data set—we can see that increasing
k from 8 to 9 results in a comparatively large distance in the land-
scape. The corresponding embeddings (Fig. 4, bottom row) explain
this behaviour: Isomap starts to bend significantly when increasing
k from 8 to 9. In addition, the colour and shape of the glyphs indic-
ate that Isomap embeddings have comparatively large errors in all
descriptors.

We now focus on the outlying glyphs with small norms. They are
the embeddings that preserve most of the topological properties of
the data descriptors. See Fig. 5 for a comparison. Using the glyphs,
we can see that PCA has a high error in the linearity descriptor but
is able to preserve density and eccentricity very well. LLE (k = 20)
features higher errors in the density descriptor, while LTSA (k= 35)
overall exhibits the least amount of errors in all descriptors. If linear
structures and global distances are to be preserved, both of these
embeddings are a good choice. If preserving linear structures on a
local scale is not important, PCA is the best choice, both in terms
of embedding quality and runtime.

5.2 Climate data

Climate researchers often deal with large-scale multivariate data
sets—any numeric simulation, which is central to their work, con-
sists of complex models with many variables at increasingly fine
resolutions. The aim of these simulations is to provide long-
term predictions of changes in world climate. We obtained a
large multivariate data set from the German Climate Computing
Centre (DKRZ). The data set covers a period of one year and is
defined over a grid of 192×96 different locations on Earth. It con-
sists of six continuous variables. Each of the 1460 time steps thus
contains 18432 vectors in R6. For the subsequent analysis with
ε = 2.5, we will exemplarily average time steps of the meteoro-
logical summer season (Jun–Aug) and obtain a random sample of
1000 points. This sampling was chosen because the complete data
is prohibitively large for some DR methods.

The data descriptor landscape (Fig. 6) exhibits a clear separa-
tion between linear and non-linear DR methods, both in terms of
glyph placement, shape, and colour. Except for SPE, all non-linear
DR methods are incapable of preserving the data descriptors on this
data set. We first focus on the embeddings that are most suitable.
FA (with varying number of iterations n), misrepresents all data
descriptors to some extent. The misrepresentations decrease with
increasing n, though. PCA, on the other hand, somewhat misrep-
resents density and linearity, while SPE slightly misrepresents both
eccentricity and linearity. In contrast to the non-linear methods,
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Figure 4: Embeddings generated by HLLE and LTSA resemble each
other and stay stable for varying values of k. The Isomap embeddings
exhibit very unstable behaviour, by contrast.
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Figure 5: Suitable embeddings for the faces data.
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Figure 6: Data descriptor landscape for the climate data. There is a
clear separation between linear and non-linear methods.



FA (k=5000) PCA SPE (k=20)

FA (n=1000) FA (n=2000) FA (n=5000)

Figure 7: Top row: Suitable embeddings for the climate data set.
Bottom row: The effects of tuning the number of iterations for FA.
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Figure 8: Embeddings generated by LLE are unstable when varying
k. Brushing reveals significant differences.

these misrepresentations are relatively small, though. Fig. 7, top
row, displays the corresponding embeddings. Through its glyphs,
the data descriptor landscape helps us understand that the linear
structures that appear to be well-developed in the FA embedding
are a salient feature of the data instead of a structural illusion.

The landscape also uncovers the effects of parameter tuning in
DR algorithms. LLE, for example, drastically changes form and
shape when slowly increasing the number of neighbours used for
calculating its linear patches. Fig. 8 shows numerous embeddings.
For larger values of k, the separation into a central structure with a
connected “flare” is more pronounced. The corresponding glyphs
show that neither one of these embeddings is able to preserve ec-
centricity in the data very well. By contrast, parameter tuning for
the FA algorithm is stable, as indicated by the distances in the data
descriptor landscape. Here, higher values for the number of itera-
tions n yield very similar embeddings. Fig. 7, bottom row, shows
that merely the amount of dispersion changes (in a localized man-
ner) when increasing n.

In conclusion, SPE and FA appear to be the most suitable choices
for embedding the climate data, followed by PCA which does not
faithfully represent density and linearity when compared to the
other methods.

6 CONCLUSION

We presented a technique for comparing DR methods on a data set.
Our visualization supports data scientists in selecting a suitable DR
method for working with their data. We used persistent homology
to compare the topology of data descriptor functions on a data set
and its embeddings. This information was subsequently visualized
in the data descriptor landscape, a glyph-based scatterplot. We
demonstrated the utility of our method on different data sets from
real-world applications. Data scientists can use our method to ob-
serve the effects of parameter tuning on embeddings and to quickly
find similar embeddings without having to display large numbers
of auxiliary visualizations. Our method would benefit from being
integrated in an established user-centric system for DR methods,
such as the DimStiller framework by Ingram et al. [12]. We also
think that the observed behaviour of some DR algorithms necessit-
ates an investigation of different synthetic and real-world data sets
on a larger scale. Data science practitioners are in need of knowing
the theoretical and practical limits of their method, as well as the

models they are based on to make an informed choice.
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