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Fig. 1. Analysis of a cuneiform tablet found in the Middle East. The high-resolution surface scan of the clay tablet with Assyrian
writing (center) can be described by 16-dimensional Multiscale Integral Invariant Volume Descriptors. The persistence rings (left)
reveal characteristic patterns in the high-dimensional space that aid in the automatic segmentation of characters (right).

Abstract—The extraction of significant structures in arbitrary high-dimensional data sets is a challenging task. Moreover, classifying
data points as noise in order to reduce a data set bears special relevance for many application domains. Standard methods such
as clustering serve to reduce problem complexity by providing the user with classes of similar entities. However, they usually do not
highlight relations between different entities and require a stopping criterion, e.g. the number of clusters to be detected. In this paper,
we present a visualization pipeline based on recent advancements in algebraic topology. More precisely, we employ methods from
persistent homology that enable topological data analysis on high-dimensional data sets. Our pipeline inherently copes with noisy data
and data sets of arbitrary dimensions. It extracts central structures of a data set in a hierarchical manner by using a persistence-based
filtering algorithm that is theoretically well-founded. We furthermore introduce persistence rings, a novel visualization technique for a
class of topological features—the persistence intervals—of large data sets. Persistence rings provide a unique topological signature
of a data set, which helps in recognizing similarities. In addition, we provide interactive visualization techniques that assist the user in
evaluating the parameter space of our method in order to extract relevant structures. We describe and evaluate our analysis pipeline
by means of two very distinct classes of data sets: First, a class of synthetic data sets containing topological objects is employed
to highlight the interaction capabilities of our method. Second, in order to affirm the utility of our technique, we analyse a class of
high-dimensional real-world data sets arising from current research in cultural heritage.

Index Terms—Topological persistence, multivariate data, clustering.

1 INTRODUCTION

In an age of ever-increasing information density, scientists in many
domains generate large amounts of high-dimensional data during their
experiments. From a researcher’s perspective, the amount and dimen-
sionality of experimental data are both “boon and bane”: On the one
hand, large data sets with many variables contain more information
that might be relevant during analysis and aid in detecting correla-
tions between objects. On the other hand, finding relevant structures
in high-dimensional data sets (regardless of their size) is non-trivial.
Projection techniques, while worthwhile, may occlude salient struc-
tures, thereby creating a wholly different appearance of a data set.
Alternatively, clustering algorithms can be used for complexity reduc-
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tion. Briefly put, the idea of these algorithms [19] is to group similar
objects, thus supporting a researcher in finding hitherto hidden struc-
tures in data sets. However, clustering does not necessarily emphasize
any structures in high-dimensional data sets—it yields a set of similar
objects, leaving much information in the input data unused. The in-
clusion of topological information such as the Betti numbers, on the
other hand, helps uncover differences and similarities between clus-
ters. To this end, we exploit recent advantages in algebraic topology.
In short, algebraic topology does not rely on the actual coordinates
of data points (as opposed to geometrically-motivated methods). In-
stead, distances (i.e. relations) between the points are considered im-
portant. Hence, these methods are ideally suited for analysing high-
dimensional, unstructured data sets. The long-standing conversion
problem of unstructured data sets into the realm of algebraic topology
was recently addressed by the development of persistent homology.
Recognizing the inherent multiscale topology of such data, persistent
homology is also somewhat noise-resistant.

In this paper, we introduce a visualization pipeline that couples a
recent persistence-based clustering scheme [5] with the calculation of
topological signatures for clusters. Our visualization pipeline works
on data sets of arbitrarily high dimensions and helps uncover hidden
relationships between clusters. Our main contributions are:



• Extending persistent homology analysis to work on large-scale,
high-dimensional real-world data sets.

• Introduction of persistence rings, a novel visualization technique
for topological features of high-dimensional data sets, providing
an abstract and concise characterization of their structures.

• Description of an analysis workflow (based on persistent ho-
mology) that is suitable for the interactive exploration of high-
dimensional data sets.

• Application of our methods to a high-dimensional data set from
cultural heritage results in the discovery of hitherto unknown
structures. We use these structures to provide the automatic
extraction of cuneiform characters from digitized cuneiform
tablets.

2 RELATED WORK

For the exploration of multivariate data sets, common algorithms ei-
ther try to find relevant dimensions in the data or project all dimensions
to 2D or 3D. Projection pursuit [18] and Isomap [23, p. 243] are typi-
cal representatives of the former class of methods. For the latter class,
parallel coordinates [33, pp. 247–249] and scatterplot matrices [33,
238–239] are very popular. Further useful projection methods include
principal component analysis [23, pp. 226–234], linear discriminant
analysis [23, Chapter 2], and multidimensional scaling [23, pp. 242–
245].

The persistence-based clustering algorithm by Chazal et al. [5] is
related to density-based clustering methods such as DBSCAN [13] and
DENCLUE [17]. However, both methods use a number of parameters
that require fine-tuning and their cluster detection is not based on the
topology of a data set.

Another approach towards the exploration of multivariate data ex-
ploits the topological structure of data sets, thereby obtaining qualita-
tive geometrical information. Furthermore, as Carlsson [1] remarks,
topological methods are less sensitive to the choice of metrics and de-
pend on intrinsic geometric properties of data sets. Due to their advan-
tages, topological methods have seen widespread use in recent years:
Gyulassy et al. [15] use topologically-motivated extraction of features
from 3D scalar fields while also performing simplification. Weber et
al. [34] visualize the topology of scalar functions as a terrain while pre-
serving critical points. Building on this, Oesterling et al. [26] visualize
generic point clouds. Singh et al. [30] presented Mapper, a method
for extracting simplified representations of high-dimensional data sets
using simplicial complexes and clustering algorithms. Its output is
consistent with the Isomap algorithm. The generalized contour tree
of Carr et al. [3] is commonly used for the analysis of scalar fields.
Several extensions help explore multivariate data sets: Pascucci and
Cole-McLaughlin [27] augment contour trees with Betti numbers of
isocontours, while Weber et al. [35] use contour trees to control and
improve volume rendering. In order to provide multi-resolution anal-
ysis of larger data sets, Pascucci et al. [28] present a topologically-
motivated simplification of the contour tree.

Recently, the pool of topological methods has been expanded by
persistent homology, a multiscale method for dealing with unstruc-
tured high-dimensional data sets containing noise. As a tool, persistent
homology has already been used for the analysis of special data sets:
Carlsson et al. [2] used persistent homology to investigate the space of
natural images, thereby identifying certain submanifolds in the data.
Singh et al. [31] applied persistent homology to analyse the topolog-
ical structure of neural activity of the primary visual cortex. Their
experiments confirm that spontaneous activity is statistically different
from noise. de Silva and Ghrist [8, 9] used persistent homology to
detect holes in sensor network coverage.

3 MATHEMATICAL BACKGROUND

In the following, we will expand on the concepts that are relevant
for understanding both the clustering algorithm and the calculation of
topological signatures. We will not be able to cover every topic in de-
tail but strive to give a short and interesting overview of the matter. For
brevity, some concepts will only be defined very loosely. The reader is

Fig. 2. Non-zero Betti numbers for idealized (i.e. perfectly sampled)
topological objects. For the torus, we also show the two generators of
the first homology group. We have b2 = 1 because the torus encloses
a void, i.e. the space inside its “tube”. Comparing the nested circles
with the torus highlights the importance of higher-dimensional homol-
ogy groups: Only when calculating 2-dimensional homology groups can
we distinguish the nested circles from the torus by purely topological
means.

Fig. 3. A simplicial complex containing simplices of dimensions 0–3, i.e.
vertices, edges, triangles, and a tetrahedron. Note that only the filled
faces in the figure are considered simplices. For real data sets, we ob-
tain the Vietoris-Rips complex Vε from a Rips graph Rε —see Sec. 3.2.

referred to Hatcher [16] and Munkres [25] for a general introduction
to algebraic topology. Zomorodian [37] and Edelsbrunner [11], on the
other hand, provide excellent introductions to persistent homology and
topological data analysis.

3.1 Algebraic topology

The core concept of algebraic topology is a topological space. We may
think of this as a set of data points from R

m, along with some notion
of connectivity, i.e. we require that each point “knows” its neighbours.
It is the task of a topologist to obtain invariants of a topological space,
i.e. criteria that help distinguish different topological spaces from each
other. The most common invariant is given by simplicial homology.
Put somewhat simplified, homology assigns a topological space a set
of groups, denoted by Hi, where i = 0,1, . . . ,m− 1. Each genera-
tor (in the group-theoretic sense) of a homology group of dimension
n then describes an n-dimensional “hole” in the data set. Thus, the
topological features detected by simplicial homology correspond to n-
dimensional “holes”, e.g. connected components (dimension 0), tun-
nels (dimension 1), and voids (dimension 2). The number of “holes”
in dimension n is also known as the nth Betti number bn of the data
set. A sphere in R

3, for example, has b0 = 1 (because a sphere has a
single connected component), b1 = 0 (because the surface of a sphere
does not have any holes), and b2 = 1 (because the sphere encloses a
void). In contrast to this, a “filled” sphere, i.e. a ball, in R

3 has b2 = 0
because it does not enclose a void. Fig. 2 shows more topological
objects and their corresponding Betti numbers. In Sec. 6.1, we will
recover their topological properties from non-idealized, noisy samples
as well.

Since homology is an invariant, the homology groups of two home-
omorphic spaces coincide (two spaces are said to be homeomorphic
if they can be transformed into each other by “stretching” and “bend-
ing”; a classical example is the homeomorphism between a doughnut
and a coffee mug—see [20], p. 5, for an example). Equal homology
groups, however, do not imply that two spaces are homeomorphic.

There are several (mostly equivalent) notions of defining homol-
ogy groups. From the perspective of computer science, simpli-
cial homology is the most appealing one because it can be cal-
culated effectively—see [25, pp. 56–61] for the standard algo-



rithm. For these calculations, the topological space needs to be
given as a simplicial complex, i.e. a space constructed from ver-
tices (0-dimensional simplices), edges (1-dimensional simplices), tri-
angular faces (2-dimensional simplices), and their corresponding n-
dimensional generalizations—see Fig. 3 for an example. For simpli-
cial homology, the generators of the homology groups are represented
as formal sums of simplices, the simplicial chains. Our topological
signature calculation algorithm uses these chains in order to highlight
the detected features of a data set.

3.2 Persistent homology

Since real-world data sets are not commonly endowed with a topolog-
ical structure, it needs to be obtained by some means. The standard
construction for this is to calculate a Rips graph Rε (also known as
neighbourhood graph) for the data set. Rε is then expanded into a
simplicial complex, yielding the Vietoris-Rips complex Vε [32]. Note
that Vε is built from the input data set and each of its simplices is a sub-
set of the data. Thus, if given a 1-simplex (u,v) of Vε , for example, it
is justified to say that data point u and v create the simplex.

Usually, the Rips graph is defined as follows: Given a set of
n data points from R

m, the Rips graph Rε is a graph whose ver-
tices are given as V = {0, . . . ,n− 1} and whose edges are given as
E = {(i, j)|d(i, j) ≤ ε}, where d refers to a distance function such as
the Euclidean metric.

The problem of Rε is its distance parameter ε: Different values
will yield different Rips graphs, which in turn will associate different
homology groups to the data set. Recognizing that there is no single
“correct” parameter value for real-world data sets, persistent homol-
ogy now calculates homology groups for a range of values for ε . To
this end, the simplices of the Vietoris-Rips complex are partitioned
into positive and negative simplices—see the seminal paper of Edels-
brunner et al. [12] for details on this calculation. Briefly put, posi-
tive simplices create a topological feature—i.e. a “hole”—while neg-
ative simplices destroy one. By assigning each simplex a weight (for
example the value of ε for which the simplex “appears” in the sim-
plicial complex), topological features can be assigned a persistence
value. For a feature created by a k-dimensional simplex σ , this value
is given as the difference between the weight of the negative (k+ 1)-
dimensional simplex τ destroying it and the weight of σ , its creator. If
a feature never gets destroyed, it is assigned an infinite persistence. For
each dimension k, the persistence values are combined into persistence
intervals of the form [a,b] with a∈R and b∈R∪{∞}. Informally put,
a is the “creation time” of a topological feature, while b is the time of
its “destruction”. The persistence or prominence of a persistence inter-
val is given as b−a ∈ R∪{∞}. Intuitively, high persistence indicates
relevant features in the data set, while low persistence indicates topo-
logical noise. Thus, persistent homology defines a multiscale homol-
ogy theory for unstructured data sets (usually given as point clouds)
by assigning them a set of persistence intervals.

3.3 Filtrations

At the heart of all persistent homology calculations lies the concept of
a filtration. A filtration of a given simplicial complex is a sequence
of valid subcomplexes. We may think of this as a simplicial complex
that is built by incrementally adding new simplices. By keeping track
in which simplicial complex a given simplex appears first, a filtration
naturally imposes a partial order on the set of simplices. This partial
order can be extended to a total order by sorting conflicting simplices
by dimension and, in case of ties, lexicographically. By varying the
filtration of a simplicial complex, we can influence the type and num-
ber of topological features that are detected. This is done by assigning
low-dimensional simplices (usually, either 0-simplices or 1-simplices)
a weight w that is calculated by some means (such as the Euclidean
distance between two 1-simplices). The weight of higher-dimensional
simplices is then calculated as the maximum of the weight of the lower-
dimensional simplices it comprises. Persistent homology calculations
then use these weights as the respective creation and destruction times
for features. For this paper, we require two filtrations.

Upper star filtration The persistence-based clustering scheme (see
Sec. 3.4 for details) uses the upper star filtration, which assigns
each 0-simplex v a density value f (v), and each edge (u,v) the
value max( f (u), f (v)). Simplices are now sorted by decreas-
ing function value and increasing dimension. Zomorodian [37]
showed that the upper star filtration corresponds to exploring
the superlevel sets of the weight function, i.e. sets of the form
f−1[α,∞] for some value α ∈ R.

Distance filtration We use the distance filtration for the calculation
of topological signatures. This filtration assigns 0-simplices a
weight of 0, while a 1-simplex (u,v) is assigned the value d(u,v),
i.e. the Euclidean distance between data points u and v. This fil-
tration is more geometrically-inclined and simplifies the detec-
tion of geometrical features in a data set—the meaning of this
will become clear when analysing the example data sets.

3.4 Persistence-based clustering

The persistence-based clustering scheme of Chazal et al. [5] uses a
density estimator to obtain a density value f (p) for each data point
p. Thus, their algorithm fits into the class of density-based clustering
schemes: Given a density function f , the assumption is that the in-
put data are samples drawn from f —see Kotsiantis and Pintelas [19]
for more information. Hence, in order to understand the structure
of the data set, the scheme of Chazal et al. analyses the topology of
f by associating clusters with the regions of attraction of the local
maxima. Since a density function is usually not directly available, it
needs to be estimated before initializing the clustering scheme. Our
method estimates the density using the distance to a measure method
introduced by Chazal et al. [4]. Requiring only a distance function
d( · , ·), this density estimator is well-suited for the density estima-
tion of point clouds. For a query point p in the data set, we have

f (p) = −1/k

√

∑
k
i=1 d2(p,ni), where ni refers to the ith neighbour of

the query point p and k is the number of neighbouring points that are
used for the density estimation. Note that the minus sign is required to
ensure that larger function values correspond to higher densities.

Taking the input points as vertices of a Rips graph Rε , each ver-
tex p is then assigned its density value f (p). Chazal et al. consider
Rε to be a 1-dimensional simplicial complex and sort it by an upper-
star filtration. Their calculation of persistent homology now involves
looking at the superlevel sets of f , i.e. sets of the form f−1[α,∞] for
a density value α ∈ R. From Morse theory, we know that a new com-
ponent appears in the superlevel set of f whenever a local maximum
v is reached. Persistent homology now prescribes that v creates a new
connected component. The component created by v is destroyed when
it gets connected to another component that has been created by an
even larger density value. This can only happen at data points that are
not a local maximum. Letting αc be the density value upon creation of
the component and αd the density value upon destruction, we assign
a persistence interval of [αc,αd ]. Following Chazal et al. [5], we dis-
play the intervals in a persistence diagram—see Sec. 4.1 for their def-
inition. Note that, by construction, each persistence interval belongs
to the 0-dimensional homology group. Thus, it describes a connected
component in the data set, and the number of intervals with a large
persistence is taken as an approximation to the number of clusters in
the data set.

3.5 Topological signatures

Having extracted structures from the data set using the persistence
clustering algorithm that is the core of our scheme, we partition the
data set according to its persistent homology in dimension 0. This
operation yields several small sets, whose total number depends on
the current parameters of the algorithm. We now expand each of this
smaller sets into its corresponding Vietoris-Rips complex, using the
fast expansion algorithm described by Zomorodian [38]. We purpose-
fully ignore the density estimates for this expansion. Instead, we se-
lect a distance-based filtration for the complex. More precisely, this
filtration will assign each 0-simplex a weight of zero, while each 1-
simplex (u,v) is assigned the Euclidean distance d(u,v) between u
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Fig. 4. Persistence diagram (left, showing H0) and 3D view of the syn-
thetic data set (right). The object colours on the right indicate the clus-
ter a data point belongs to. Our algorithm recovers the three distinct
objects correctly. We created the objects at different scales in order to
prove that our persistence visualizations handle this correctly. For the
persistence diagram (left), we colour-coded points by their relative per-
sistence values, using a continuous diverging colour map suggested by
Moreland [24]. Note that the points in the upper right corner have a very
high multiplicity but as their persistence values are roughly equal, they
become occluded.

and v. We selected this filtration because it represents multi-scale fea-
tures better—features at smaller scales, for example, may not conform
to the surrounding density, which would make them harder to detect.
For each expanded complex, we now apply the persistent homology
calculation algorithm described by Zomorodian and Carlsson [39]. In
addition to the calculation of the persistence intervals as outlined in
Section 3.2, this algorithm has been extended to calculate the genera-
tors of the detected features. Each generator corresponds to a simpli-
cial chain that creates a certain topological feature in the data set—we
show examples for this in Sec. 6.1. As a result, we obtain a set of
topological signatures depicting the topology of each structure that
was detected by the persistence clustering algorithm.

The use of topological signatures depends on the selected data set.
At a coarse level, even without the calculation of homology genera-
tors, they help in similarity detection. Similar topological signatures
indicate similarities in the detected structures. At a fine level, by using
the homology generators, the signatures may uncover hidden or nested
structures in the detected clusters.

4 PERSISTENCE VISUALIZATIONS

Persistent homology calculations yield a set of persistence intervals for
each dimension. Currently, there are two common methods for visu-
alizing these intervals: Drawing them as intervals in the plane, which
is done by persistence barcodes [14], or drawing them as points in the
plane, which is done by persistence diagrams [6]. In this section, we
show both visualizations and describe their drawbacks. In addition, we
motivate our persistence rings visualization, which uses a radial visu-
alization of persistence intervals, thereby combining the advantages of
persistence diagrams and barcodes. In the following, we assume that
we have a set Ik of persistence intervals for each dimension k of the
data set. Intervals from Ik describe generators from the kth persistent
homology group, and we will hence say that the corresponding visu-
alization shows Hk (while it actually shows the generators of Hk).

4.1 Persistence diagrams

For each [a,b] ∈ Ik, we obtain a persistence diagram by considering
the interval to signify a point in the Euclidean plane—see Fig. 4a for
an example. Intervals with b = ∞ are usually placed slightly outside
the diagram or on its (upper or lower) border. Note that, depend-
ing on the filtration, values are either situated all above the diagonal
(e.g. for the distance-based filtration) or below the diagonal (e.g. for
the upper-star filtration used for persistence clustering). Points with a
close distance to the diagonal indicate features that have a rather brief
existence. Consequently, a dense area of points around the diagonal
indicates topological noise. In total, the persistence diagram stresses
the lifespan, i.e. the persistence of topological features, highlighting
those that do not exist for very long.

Fig. 5. H1 of the second cluster (a torus) of the synthetic data set, shown
as a barcode (which we rotated for layout reasons). Even for an object
as topologically simple as a torus, the amount of persistence intervals
is substantial. See Sec. 6.1 for a detailed discussion of the data set.

The drawback of this visualization is that users expect the dense ar-
eas around the diagonal to represent significant structures in the data
set—instead, the converse is true. We solve this by colouring each
point in the diagram based on its (relative) persistence value. Relevant
points, i.e. points with a large persistence, are highlighted in red by this
colour map. A further problem of the diagram is the occlusion of fea-
tures with (almost) equal values. Users cannot easily determine how
many features are represented by a point in the diagram. For qualita-
tive queries, e.g. for comparing which point represents more features
in the diagram, colour-coding could be used. However, this still makes
it harder for users to grasp how many features are present. Despite all
this, the persistence diagram has its merits because it greatly simpli-
fies highlighting all features whose lifespan is bounded by some upper
value. Thus, the persistence diagram is a good choice for displaying
the results of the clustering algorithm.

4.2 Persistence barcodes

For each [a,b] ∈ Ik, we obtain a persistence barcode by drawing a hor-
izontal line or bar from a to position b. The resulting bars are then
placed on top of each other—see Fig. 5 for an example. Again, in-
tervals with b = ∞ are handled by extending their lines beyond the
borders of the barcode. Thus, barcodes represent persistence intervals
as bars of different lengths, thereby highlighting both the lifespans of
attributes as well as their creation times.

The disadvantage of barcodes is their increase in height for larger
data sets—which is why we will not be using them for the analysis
of our data sets in Sec. 6. Since even a very small interval occupies
some vertical space, users quickly lose their overview over larger data
sets. For example, users cannot simply estimate the number of features
present at a given “time”. A further problem of barcodes is that very
small intervals may not be represented adequately—they may sim-
ply be lost in the clutter of surrounding intervals. On the other hand,
since each feature is represented by a single bar, the barcode does not
suffer from any occlusion problems. Using zooming and filtering of
intervals, interactive barcodes may somewhat remedy the shortcom-
ings. However, barcodes cannot easily provide users with a sufficient
overview of the data set.

4.3 Persistence rings

Motivated by requiring a visualization that is compact while still pro-
viding a good overview of the data set, we introduce persistence rings.
This visualization displays persistence intervals radially. More pre-
cisely, we assign [a,b] ∈ Ik an annular sector from radius a to radius
b. If b = ∞, we use a radius that is larger than the radii used for the fi-
nite intervals. Consequently, we still have two degrees of freedom for
drawing the annular sectors, namely its opening angle θ (which deter-
mines the size of the sector) and its angular offset φ (which determines
the radial position of the sector).

Depending on the desired view on the data set, different ways of
selecting these angles can be established. Ideally, we would like the
angles to reflect the relevance of a given feature. Foremost, however,
we require that all annular sectors are placed without any overlaps.
Satisfying both constraints is not easily possible because the problem



is inherently a global optimization problem—local optimization of an-
gles cannot guarantee that there are no overlaps. In addition, the inter-
sections between different intervals are intransitive, making it harder
to check whether an interval can be placed correctly. During the im-
plementation of the persistence rings, we experimented with different
approaches. Global optimization of both angles (using a simple func-
tion that relates the area of a segment to its persistence) proved to be
very costly due to missing gradients. Furthermore, the layout was not
aesthetically pleasing and contained some overlaps, thereby not allevi-
ating the occlusion problem. Our current implementation thus uses a
simple heuristic to ensure that there are no overlaps and that the size of
each segment and its persistence are (roughly) correlated—see Alg. 1
for details. However, the heuristic cannot guarantee this correlation:
Segments with few neighbours may be assigned a large θ even though
their persistence is small.

Input : Set I of persistence intervals, interval tree T

Output: Persistence intervals with assigned angles
Partition I into finite and semifinite intervals. Sort the finite
intervals by increasing persistence, i.e. by increasing interval
length. Sort the semifinite intervals by increasing creation time.

foreach Interval I ∈I do
N ← FINDOVERLAPPINGINTERVALS(T , I)
numNeighbours← 1, sumLengths← 0, φmax ← 0
foreach Interval N ∈N do

if ALREADYPLACED(N) then
φmax ← MAX(φmax, φ(N)+θ(N))

else
numNeighbours← numNeighbours +1
sumLengths← sumLengths+GETLENGTH(N)

end

end
α ← 2π−φmax, φ(I)← φmax

if I is finite then
θ(I)← α ·GETLENGTH(I)/sumLengths

else
θ(I)← α/numNeighbours

end

end

Alg. 1: Placement heuristic for persistence rings

In order to give users more visual clues concerning the persistence
of the annular sectors, we colourize each sector according to its persis-
tence, thereby facilitating the detection of relevant features in the data
set. The colours of the annular sectors can also be used for other pur-
poses: For the calculation of topological signatures, we assign colours
based on the length of the simplicial chain of a persistence interval.
This colour assignment highlights topological features that occur at
different scales, regardless of their actual persistence values—see our
analysis in Sec. 6.1 for details.

4.4 Comparison

Fig. 6 contains different persistence visualizations for a noisy exam-
ple data set. The data set (Fig. 6a) contains two nested circles with
different sizes that have been sampled unevenly with approximately
150 points per circle. Below the data set, the corresponding barcode
for H1, i.e. the first homology group of the data set, is shown. Here,
the barcode contains little noise and indicates that there are two persis-
tent generators, described by the first bar (corresponding to the circle
denoted by the number 2) and the third bar (corresponding to the cir-
cle denoted by the number 1). Two other generators with a smaller
lifetime also appear, but are destroyed later on. These correspond to
smaller degenerate circles caused by the additional noise in the data
set. The persistence diagram (Fig. 6b) showing the same information
contains a lot of topological noise, which results in many points clus-
tered around the diagonal. Note that since we used a distance filtration
to calculate the persistence diagram, all points are situated above the
diagonal. The persistence ring (Fig. 6c) clearly shows that the first
persistent generator (the larger of the two outer “slices” of the rings)
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Fig. 6. A comparison between different persistence visualizations for
H1. The underlying data set contains a noisy sampling of two nested
circles (among others, we will also use these objects in Sec. 6.1). The
two relevant generators of the first homology group are indicated by the
numbers 1 and 2. See Sec. 4.4 for more details.

is created very early, while the second persistent generator is only cre-
ated for a rather large distance value. This indicates that the scale of
the features described by the generators varies—we can see that there
is a size difference between both circles. In essence, the persistence
diagram shows (Fig. 6b) the same information. However, the scale of
the features is not immediately obvious to users.

5 WORKFLOW

In short, our persistence-based visualization and analysis pipeline con-
sists of the following steps: (i) We cluster input point clouds of arbi-
trary dimensions using the algorithm described in Sec. 3.4. (ii) The
user is presented the clustering results via projections of the original
data. (iii) Additional persistence visualizations depict central topo-
logical features of the data set. (iv) The different visualizations are
interactive and coupled to enable a “brushing and linking”-like data
exploration. More precisely, a typical analysis session results in the
following steps:

1. Obtain information about the (potential) number of connected
components in the data set by using dendrograms created with single-
linkage hierarchical clustering [5]. Use this information to select a
distance threshold ε for the persistence clustering algorithm. Note that
without the dendrogram information, this parameter would be very
volatile: A wrong value for ε will result in oversampling the input
data—in the worst case, if ε is set to the maximum distance of two
data points, the clustering scheme will always detect a single large
cluster.

2. Set parameter k, which represents the number of neighbours
used for the density estimator. Usually, our default value of 15 yields
satisfactory results. The user may verify the choice for k through a
point cloud or a histogram of the density values. Values for k that
result in little variation should be avoided. If k is set too high, there
will be no spread in densities any more. If k is set too low, too many
points of maximum density will be found by the clustering algorithm.

However, we did not experience any significant changes in the clus-
tering quality when modifying k. Thus, as long as care is taken that
there is some variation of densities, the actual parameter value is not
relevant.

3. Use information from the previous steps to apply the persis-
tence clustering algorithm. This yields a (coarse) segmentation of the
point cloud, resembling a density-based clustering. We provide a low-
dimensional projection of the input point cloud, making it possible for
the user to fine-tune parameters of the clustering scheme—although
our software contains sensible default values for each parameter, they
might not be applicable to any situation. Furthermore, we augment
the projection using colours based on density values or cluster associ-
ations. If preferred by the user, the data view may also use projection
techniques such as multidimensional scaling or parallel coordinates.

4. The user may now choose to either explore the segmented data
set (using topological signatures) or refine the segmentation (by chang-
ing the parameters of the clustering algorithm). The topological sig-



natures as described in Sec. 3.5 uncover similarities of the detected
clusters.

5. Having obtained information using the topological signatures,
the user may choose to perform further topological analysis on either
the whole point cloud or parts of it. Due to the fast runtime of the
persistence clustering algorithm for moderately sized data sets, this
allows an almost real-time exploration of multivariate data sets.

6 RESULTS

In the following, we present the results of applying our visualization
pipeline to two classes of data sets. We first analyse a synthetic data
set containing a variety of interesting topological structures. We also
use this data set to highlight how topological signatures help users
explore a high-dimensional data set. After this, we show the results
of our analysis of high-dimensional feature space data from cultural
heritage. Our method enables the identification of relevant structures
in the feature space. We use these structures to distinguish the writing,
i.e. cuneiform characters, from the background of cuneiform tablets.

6.1 Synthetic data set

In order to evaluate our analysis pipeline and highlight its interaction
capabilities, we generated a synthetic data set that contains a number
of topological features: We sample three distinct topological objects
at random—a circle, two nested circles, and a torus. The center of
each of these objects is placed at random in the data set. We then
embed each object in a high-dimensional space by using the subgroup
algorithm of Diaconis and Shashahani [10]. Briefly put, this algorithm
can be used to calculate a random element of SO(n), i.e. the special
orthogonal group of n× n matrices, which describes rotations in an
n-dimensional space. We now pad the coordinates of each object with
zeros and apply the rotation matrix. The result is a seemingly high-
dimensional point cloud containing discrete samples of objects from
R

2 and R
3. As a last step, in order to simulate real-world data sets,

we add 25% noisy data points using Gaussian noise with µ = 0 and σ
equal to half the average distance of the points around each object.

For the analysis, we first apply the clustering algorithm to the point
cloud. Since the data set is not very complicated, the clustering algo-
rithm perfectly recovers the three objects, yielding a classification rate
of 100%. See Fig. 4a for the resulting persistence diagram and Fig. 4b
for the point cloud and its cluster associations. The three objects show
up as three points of infinite persistence in the persistence diagram.
This is indicated by the three red points on the x-axis of the diagram.
Note that the remaining points are of finite persistence because they
are coloured differently. The information that three distinct objects
have been identified already conveys some insight into the data set.
In order to improve this insight, we also calculate a topological sig-
nature for each object—see Fig. 7 for a combined display and Fig. 9
for the corresponding persistence diagrams (which we included for
comparison reasons). The signature clearly highlights in what ways
these objects differ: For the first cluster (Fig. 7a), we have a single
large persistence generator in dimension 1. Thus, this cluster has the
topology of a circle and the generator corresponds to the “hole” that is
bounded by the circle. For the second cluster (Fig. 7c), we obtain two
generators of large persistence in dimension 1 and many generators of
lesser persistence. Further interaction with the persistence rings shows
that the plethora of less-persistent generators corresponds to circular
structures of the torus. These structures are detected at a very early
distance level by persistent homology—hence their relatively large
persistence—but they are destroyed as soon as the simplicial complex
has been expanded. The two prominent generators, on the other hand,
correspond to the two circles that create the torus. In dimension 2, the
second cluster has a single persistent generator, indicating an enclosed
cavity or void. All in all, this suggests the topology of a torus for the
second cluster. For the third cluster (Fig. 7b), we again identify two
generators of large persistence in dimension 1, as well as some gen-
erators of low persistence. Interaction again shows that each of the
persistent generators corresponds to the “holes” bounded by each cir-
cle while the less-persistent generators correspond to topological noise
that occurs during the expansion of the simplicial complex. Note that

(a). H1 of the circle (b). H1 of the nested circles

(c). H1 and H2 of the torus

Fig. 7. Persistence visualizations for the detected clusters of the syn-
thetic data set. In comparison to a barcode, the persistence rings
show the data in a more compact and aesthetically pleasing way, al-
lowing faster comparisons between different signatures. As described
in Fig. 4a, each sector is colourized according to its relative persistence
value. See Sec. 6.1 for a detailed discussion of the data set and its
persistent homology.

the third cluster is shown to behave differently than the second cluster.
Our signature does not show any topological features in dimension 2,
which is justified because the nested circles do not enclose a cavity.
Hence, even without any further inspection of the data set, persistence
rings serve to distinguish the torus from the nested circles, both quanti-
tatively (more persistence intervals) and qualitatively (non-empty per-
sistent homology in dimension 2).

In order to obtain information about the scale of the detected fea-
tures, we added the option of colouring persistence rings according to
the lengths of their associated boundary chains. More precisely, the
persistent homology calculation [39] yields a boundary chain for each
persistence interval. By counting the number of simplices the bound-
ary chain consists of, we obtain an approximation of the size of the
corresponding feature. Fig. 8 depicts the size of several features of the
synthetic data set.

In summary, we obtain an understanding of intrinsic properties of
structures in a data set without overly relying on their actual coordi-

(a). Persistence ring of H1 for
the torus

(b). Persistence ring of H1 for
the nested circles

Fig. 8. For these persistence ring visualizations, we colourized the an-
nular sectors by the lengths of their boundary chains (using the colour
map from Fig. 4a), thereby obtaining a visualization of the scales of the
detected topological features. For the torus cluster on the left, we see
that its first persistent generator does not contain many points because
it corresponds to the circle that goes around the “hole” bounded by the
torus. The second generator, on the other hand, contains more points
as it goes around the “tube” of the torus. For the cluster of nested circles
(right), we see that both circular features have roughly the same number
of data points.
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(c). H1 and H2 of the torus

Fig. 9. Persistence diagrams for the detected clusters of the synthetic
data set. Note the presence of topological noise around the diagonal.
See Fig. 7 for the corresponding persistence rings.

nates: Note that our method recovers the topological objects and their
signatures correctly without using any prior information about the di-
mensionality of the point cloud. Also, we do not make any assump-
tions about the structures that are embedded in the data set.

6.2 Analysing the 16-dimensional feature space of Multi-
scale Integral Invariant (MSII) filters

Our second application is rooted in the field of cultural heritage:
Cuneiform tablets are among mankind’s earliest form of written doc-
uments. These are clay tablets of varying shapes and sizes that
have been inscribed using blunt reeds. The impressions and inden-
tations left by the writing device are shaped like wedges, hence the
name cuneiform (from the Latin word cuneus, meaning “wedge”). At
present, there are several hundreds of thousands of different cuneiform
tablets. Only few experts in assyriology are capable of their transcrip-
tion, transliteration, and translation. Since the tablets are often dam-
aged, this process is very time-consuming.

Previous approaches for automatic character extraction involved the
use of photography of 2D scanners, which proved to be very error-
prone. Recently, the rise of precise 3D scanners facilitated the cre-
ation of digitized versions of the cuneiform tablets. These meshes
preserve geometrical and topological information, making them suit-
able for further analysis. Our work builds on methods introduced by
Mara et al. [22, 21]. Briefly put, this work involves the calculation of
a multiscale filter for meshes of cuneiform tablets.

This Multiscale Integral Invariant (MSII) filter was introduced by
Pottmann et al. [29] for feature detection on 2D manifolds embedded
in R

3. The filter requires input data in the form of a polygonal mesh,
i.e. a triangulated point cloud. At any point p ∈ R

3 of the input mesh,
the volume integral invariant Vr(p) is defined as the integral of the in-
dicator function of the mesh domain D, evaluated within a Euclidean
ball B of radius r around p, i.e. Vr(p) =

∫

p+rB 1D(x)dx. The volume

descriptor is then normalized such that Vr(p) ∈ [−1,1]. Instead of
calculating Vr(p) for a single radius r, Pottmann et al. [29] now de-
fine a scale of 16 decreasing radii r1, . . . , r16. Then, they evaluate
Vr(p) for each radius, and assign each point p ∈ R

3 its feature vector

fp = (Vr1
(p), . . . ,Vr16

(p))∈R16. The set of all 16-dimensional feature
vectors is called the feature space of the mesh. Pottmann et al. further-
more show that the feature space yields a very accurate measure of
the local convexity or concavity of a point in the mesh. The multiple
scales ensure that even small variations in the shape of the mesh can
be detected.

Mara et al. [22] now suggest a preliminary character extraction al-
gorithm operating on this feature space. Their proposed technique uses
the convolution of feature vectors, combined with a thresholding pro-
cedure. However, there are several problems: (i) The calculation of
feature vectors requires a start radius and a number of scales. Incorrect
choices will make the character extraction process error-prone. (ii) A
threshold cannot be easily chosen. Furthermore, the extraction is very
unstable with respect to small changes to the threshold. (iii) The re-
sults of the extraction process cannot be validated automatically.

Our topological exploration method now operates on the 16-
dimensional feature space (i.e. we do not use the connectivity of
the input mesh), providing solutions to the problems outlined above:
First, using persistence-based clustering, we partition the feature space
into several clusters. These clusters describe different regions in the
mesh of a cuneiform tablet. Second, using topological signatures, we
can quickly decide whether a data set contains meaningful structures.
This is a first step towards automatic validation of the extraction pro-
cess. Third, we highlight instabilities in the feature vector calculation,
which warrants further research into integral invariants. At last, by in-
teracting with the persistence rings, we discover a previously unknown
complicated nested relationship of several classes of feature vectors.

In the following sections, we describe the results of our topologi-
cal analysis. We deliberately only use homological information from
dimension 0 (for the clustering) and dimension 1 (for the signature
calculations). Although our method handles arbitrary dimensions, the
restriction to H0 and H1 reduces the complexity of our analysis, while
retaining sufficient information about the high-dimensional space to
enable us to derive valuable clues about the spatial structure of differ-
ent features.

6.2.1 “Kaskal” data set

We first analyse a synthetic mesh depicting the cuneiform character
“Kaskal”. In contrast to real-world data, this mesh has fully planar
parts. In addition, the indentations are executed perfectly and there
are no damaged parts. Fig. 12a depicts an orthographic projection
of the mesh with virtual illumination. Using the dendrogram from
Fig. 10, we experimented with values for ε in the range of 0.075–
0.125. All these parameters roughly yielded the same persistence dia-
gram, which is shown by Fig. 10. Application of the persistence clus-
tering algorithm resulted in 12 clusters—see Fig. 12b. The clusters
provide a very good partition of the cuneiform character into several
parts. Firstly, note that the majority of points are assigned to the largest
cluster (shown in orange). It comprises the locally planar parts of the
mesh. Thus, parts of each V -shaped wedge are also assigned to this
cluster. Secondly, the red cluster describes the “bottom” part of each
V -shaped wedge. Finally, the remaining clusters contain points that
describe various substructures of the mesh—the green cluster, for ex-
ample, contains points where two or more wedges intersect.

Fig. 11 shows three representative persistence rings for the data set,
describing the orange cluster (Fig. 11a), the green cluster (Fig. 11b),
and the red cluster (Fig. 11c). Note that even by visual inspection,
the differences in the clusters are apparent. Thus, without relying on
information such as the cluster size, which might be misleading for
noisy data sets, users can reliable distinguish different clusters from
each other.

Furthermore, we found that the large number of generators for the
orange cluster indicates literal “holes” in the parameter space: There
are several sets of points belonging to the orange cluster that bound
other clusters in the data set. In contrast, for the remaining clusters,
we discovered that the number of generators of large persistence varies
only between 2 and 3. Again, we identified points that bound other
clusters. Points of the orange cluster permeate the complete feature
space, while the smaller clusters only bound some smaller parts of it.
So far, these findings indicate a complex nested relationship between
the different clusters, making further studies necessary. This relation-
ship was hitherto not explored and we are convinced that it can be
exploited to further improve the quality of the segmentations.

In summary, with the “Kaskal” data set, we studied several relevant
surface structures of a cuneiform tablet while keeping data artefacts as
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Fig. 10. Persistence diagram (left, showing H0) and dendrogram (right)
for the “Kaskal” data set. The clearly separated areas in the persistence
diagram are due to the synthetic origin of the data set: There is only
a single off-diagonal point of finite persistence; the remaining points
of finite persistence are all situated along the diagonal, indicating that
they have a persistence of 0. We use the dendrogram to choose ε ∈
[0.075,0.125].

(a). H1 for cluster 1
(orange)

(b). H1 for cluster 4
(green)

(c). H1 for cluster 8
(red)

Fig. 11. Representative persistence ring visualizations of the first ho-
mology group H1 for the “Kaskal” data set shown in Fig. 12. Fig. 11a
shows the topology corresponding to the cluster containing all planar
points. By inspecting the simplicial chains, we found that each genera-
tor corresponds to a sequence of data points bounding one of the non-
planar clusters. Fig. 11b shows the topology of the cluster containing
the points at the intersections of the cross-like structures of the “Kaskal”
sign. Here, we identified a single persistent generator that bounds clus-
ter 8. Finally, cluster 8 contains points at the “ridges” of the cuneiform
signs. Again, its topology is similar to that of the other clusters.

small as possible. The topological signatures, represented as persis-
tence rings, demonstrate that the multivariate feature space contains
complex high-dimensional structures. These structures differ for dif-
ferent parts of the data set (such as the cuneiform signs themselves
and the background of the clay tablet). In this analysis, we explored
and explained the resulting structures. We found typical character-
istics that manifest themselves in the topological signature, i.e. the
persistence rings. These characteristics look alike even for different
cuneiform signs, as we will demonstrate in the next section.

We separated the feature vectors of the “Kaskal” data set into sev-
eral clusters with unique signatures, which we hope to further exploit
in the future—ultimately, we strive to obtain a reconstruction of im-
pressions of individual wedges or cuneiform signs.

6.2.2 “HOS G8” data set

To test our methods on real-world data, we selected a digitized
cuneiform tablet, designated “HOS G8” by the Heidelberger Objekt-
sammlung. With 344694 vertices and 689384 faces, the local resolu-
tion of the cuneiform characters is very high and covers even small de-
tails such as fingerprint. However, the high resolution also renders au-
tomatic character extraction very difficult. Our initial analysis showed
that the feature vectors for real-world data contain much noise. The
noise is not only caused by instabilities of the feature vectors, but also
by imperfectly imprinted cuneiform characters. For the complete data
set, we encountered many spurious persistence intervals that aggra-
vated our analysis. Hence, we manually selected several regions of
interest in the mesh and analysed them instead of the larger data set.

(a). Mesh with virtual lighting (b). Segmented mesh without
lighting

Fig. 12. For validating our topological approach, we used a synthetic
mesh depicting the “Kaskal” cuneiform sign. With 1233 vertices and
2432 faces, the underlying mesh is small enough for the feature vector
calculation to work in real-time. The image to the left depicts an ortho-
graphic projection of the mesh using virtual illumination to highlight the
ridges. The image to the right shows the result of our clustering algo-
rithm. We detect 12 distinct clusters that describe regions of different
curvature in the mesh—see Sec. 6.2.1 for a detailed discussion.
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Fig. 13. Persistence diagram of H0 for the “HOS G8” cuneiform tablet.
Note that there is much topological noise of little persistence clustered
along the diagonal and many features of infinite persistence.

In addition to less noise, this also effectively reduced the running time
of our algorithm from 300s for the complete data set to a mere 5s–10s.
Despite the reduced data set, however, dendrograms proved to be im-
practical for choosing ε . We thus resorted to estimating the average
distance of points in the feature space by randomly selecting a fraction
of points and querying their k nearest neighbours (with k ∈ [10,20]).
For each selected point p, we calculated the mean distance mp to its
neighbours. The mean of all mp values then yielded a good estimate of
the average point distance for the complete point cloud. We then pro-
ceeded heuristically by setting ε to multiples of this estimate. While
this procedure proved to be sufficiently easy to follow and provided us
with several partitions, we aim to improve the selection process for ε
in a future publication.

Fig. 13 shows an example persistence diagram that is obtained for
one of the regions of interest of the cuneiform tablet. Note that this di-
agram also contains a clear separation of topological noise (along the
diagonal) and topological features (along the bottom). Upon increas-
ing ε further, these components will quickly be merged into a single
large cluster. This is due to the skewed density distribution of the data
set: Each mesh contains a large amount of “regular”, i.e. planar or
almost planar, data points, which results in a large density. The non-
planar points, however, are very different from each other, and will
rather be merged into the cluster of regular points. To counteract this,
we selected a value for ε that resulted in a fair distribution of points and
merged each cluster into its nearest neighbouring cluster. This resulted
in a segmentation of the data set such that the skeleton of a cuneiform
sign is extracted. Fig. 1 and Fig. 14 show our segmentations.

The analysis of the topology of each data set agrees with our anal-
ysis from Sec. 6.2.1. First of all, we note that those clusters that con-
tain points in the background exhibit the same topology regardless of
the number of points: Fig. 15a (for a larger region of interest) and
Fig. 15c (for a smaller region of interest) show the persistence rings



(a). First region of interest

(b). Second region of interest (c). Third region of interest

Fig. 14. Several regions of interest for the “HOS G8” data set. Due to
the high mesh density, as depicted in Fig. 14a, we removed parts of the
mesh (hence the uneven borders) in order to obtain a smaller data set.

corresponding to points in the background of Fig. 14a and Fig. 14c,
respectively. The large number of generators describes the previously
encountered phenomenon: The feature space contains a plethora of
“holes” that bound smaller clusters (again corresponding to parts of
the cuneiform characters). In contrast to that, less generators show
up in the persistence rings that corresponding to the writing on the
tablet—see Fig. 15b and Fig. 15d. By merging the smaller clusters
into a single large one, we combine their topological features. Just
as in the case of the “Kaskal” data set, the persistence rings suggest
a nested relationship—which strengthens our previous analysis. Note
that the topological structure of these clusters is not as rich as for the
“background” cluster. This is caused by too much noise in the feature
vectors, which explains the instabilities of the thresholding approach
as well as the failure of automated character extraction. Thus, our
topological analysis suggest new directions for the calculation of fea-
ture vectors. Namely, by varying the feature vector radii based on lo-
cal densities, we expect better results, indicated by a richer topological
structure.

7 CONCLUSION & FUTURE WORK

We introduced a novel method for exploring a high-dimensional data
set. To this end, we coupled a topologically-based clustering algo-
rithm with the calculation of topological signatures. We used these
signatures to distinguish clustered objects by their topology. In addi-
tion, we introduced persistence rings, a novel visualization technique
for the persistence intervals that are created by persistent homology
calculations. We combined our new visualization with persistence di-
agrams and persistence barcodes, thereby allowing an interactive ex-
ploration of a high-dimensional data set.

We demonstrated the viability of our method using two classes of
data sets: First, we provided an in-depth analysis of a synthetic data set
that contains several topological objects. Our persistence rings visual-
ization detects the differences between the individual clusters, thereby
showing the advantages of coupling clustering algorithms with topo-
logical signatures. Second, we analysed the 16-dimensional feature
space of filter responses for cultural heritage data. Our method detects
hitherto unknown structures in the feature space, revealing compli-
cated nested relationships. Moreover, by clustering the feature space,
we were able to segment virtual cuneiform tablets into parts containing

(a). H1 of the cluster describing
the background of Fig. 14a

(b). H1 of the cluster describing
the writing of Fig. 14a

(c). H1 of the cluster describing
the background of Fig. 14c

(d). H1 of the cluster describing
the writing of Fig. 14c

Fig. 15. Persistence rings for H1, i.e. the first homology group, of the
different regions of interest shown in Fig. 14.

writing (i.e. cuneiform characters) and parts containing only the back-
ground. While feature space information was previously exploited by
different means, our method does not suffer from instabilities in the
data and requires no complicated thresholding. Thus, by operating on
a 16-dimensional feature space, our segmentation facilitates cuneiform
character extraction for 3-dimensional data and allows further post-
processing. Automatic character extraction is an important goal for
assyriologists, who have to deal with the transcription of several hun-
dreds of thousands of (often damaged) cuneiform tablets.

For future work in this area, topological signatures should include
a better localization of features, i.e. assigning each homology gener-
ator feature a geometrical meaning. In the synthetic torus data set,
for example, one generator should correspond to points around the
“tube” of the torus, while the other one should correspond to points
around the “hole”. In the video accompanying this publication, we
show an implementation of a simple localization procedure. It works,
however, only for extremely simple data sets. A potential solution for
the localization problem was recently presented by Zomorodian and
Carlsson [40].

Furthermore, the different ways of creating simplicial complexes
should be examined—witness complexes [7], for example, are an
alternative to the Vietoris-Rips expansion. At last, future research
should investigate several metrics for Rε . Throughout this paper,
only the Euclidean metric was used. However, using approaches
such as metric learning, domain knowledge may be added to the cre-
ation of Rε , thereby further improving the quality of the results—see
Yang [36] for a comprehensive survey.
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measures based on distance functions. Rapport de recherche 6930, IN-

RIA, May 2009.

[5] F. Chazal, L. Guibas, S. Oudot, and P. Skraba. Persistence-based cluster-

ing in Riemannian manifolds. In Proc. 27th Annual ACM Symposium on

Computational Geometry, pages 97–106, 2011.

[6] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persis-

tence diagrams. Discrete & Computational Geometry, 37(1):103–120,

Jan. 2007.

[7] V. de Silva and G. Carlsson. Topological estimation using witness com-

plexes. IEEE/Eurographics Symposium on Point-Based Graphics, pages

157–166, 2004.

[8] V. de Silva and R. Ghrist. Coordinate-free coverage in sensor net-

works with controlled boundaries via homology. International Journal

of Robotics Research, 25(12):1205–1222, Dec. 2006.

[9] V. de Silva and R. Ghrist. Coverage in sensor networks via persistent

homology. Algebraic & Geometric Topology, 7:339–358, 2007.

[10] P. Diaconis and M. Shahshahani. The subgroup algorithm for generating

uniform random variables. Probability in the Engineering and Informa-

tional Sciences, 1(1):15–32, 1987.

[11] H. Edelsbrunner and J. L. Harer. Computational topology. American

Mathematical Society, Providence, RI, 2010.

[12] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-

sistence and simplification. Discrete & Computational Geometry,

28(4):511–533, 2002.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceed-

ings of the 2nd International Conference on Knowledge Discovery and

Data Mining, pages 226–231, 1996.

[14] R. Ghrist. Barcodes: The persistent topology of data. Bulletin of the

American Mathematical Society, 45:61–75, 2008.

[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.

Topology-based simplification for feature extraction from 3d scalar fields.

In Proceedings of IEEE Conference on Visualization, 2005.

[16] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.

[17] A. Hinneburg and D. A. Keim. An efficient approach to clustering in

large multimedia databases with noise. In Proceedings of the 4th Inter-

national Conference on Knowledge Discovery and Data Mining, pages

58–65, 1998.

[18] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475,

1985.

[19] S. B. Kotsiantis and P. E. Pintelas. Recent advances in clustering: A brief

survey. WSEAS Transactions on Information Science and Applications,

1:73–81, 2004.

[20] J. M. Lee. Introduction to topological manifolds. Graduate Texts in

Mathematics. Springer, 2000.

[21] H. Mara. Multi-Scale Integral Invariants for Robust Character Extraction

from Irregular Polygon Mesh Data. PhD thesis, Heidelberg University,

2012 (submitted).

[22] H. Mara, S. Krömker, S. Jakob, and B. Breuckmann. GigaMesh and

Gilgamesh - 3D Multiscale Integral Invariant Cuneiform Character Ex-

traction. In Proc. VAST Int. Symposium on Virtual Reality, Archaeology

and Cultural Heritage, pages 131–138, Palais du Louvre, Paris, France,

2010.

[23] S. Marsland. Machine learning - An algorithmic perspective. Chapmann

& Hall / CRC Press, 2009.

[24] K. Moreland. Diverging color maps for scientific visualization. In

Proceedings of the 5th International Symposium on Advances in Visual

Computing: Part II, ISVC ’09, pages 92–103, Berlin, Heidelberg, 2009.

Springer-Verlag.

[25] J. R. Munkres. Elements of algebraic topology. Addison-Wesley Pub-

lishing Company, Inc., 1984.

[26] P. Oesterling, C. Heine, H. Jänicke, G. Scheuermann, and G. Heyer. Vi-

sualization of high-dimensional point clouds using their density distri-

bution’s topology. IEEE Transactions on Visualization and Computer

Graphics, 17(11):1547–1559, November 2011.

[27] V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topol-

ogy of level sets. In Visualization, 2002. VIS 2002. IEEE, pages 187–194,

November 2002.

[28] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The TOPORRERY:

Computation and presentation of multi-resolution topology. In Mathe-

matical Foundations of Scientific Visualization, Computer Graphics, and

Massive Data Exploration, pages 19–40. Springer, 2009.

[29] H. Pottmann, J. Wallner, Q.-X. Huang, and Y.-L. Yang. Integral invari-

ants for robust geometry processing. Computer Aided Geometric Design,

26:37–60, January 2009.

[30] G. Singh, F. Memoli, and G. Carlsson. Topological methods for the anal-

ysis of high dimensional data sets and 3d object recognition. In Euro-

graphics Symposium on Point Based Graphics, pages 91–100, 2007.

[31] G. Singh, F. Mémoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and

D. Ringach. Topological analysis of population activity in visual cortex.

Journal of Vision, 8(8), 2008.
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