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Persistence Concepts for 2D Skeleton Evolution
Analysis

Bastian Rieck, Filip Sadlo, and Heike Leitte

Abstract In this work, we present concepts for the analysis of the evolution of two-
dimensional skeletons. By introducing novel persistence concepts, we are able to
reduce typical temporal incoherence, and provide insight in skeleton dynamics. We
exemplify our approach by means of a simulation of viscous fingering—a highly
dynamic process whose analysis is a hot topic in porous media research.

1 Introduction

There are many research problems that express themselves more in terms of topo-
logical structure than morphology. Typical examples of such processes include elec-
trical discharge, the growth of crystals, and signal transport in networks. In this pa-
per, we address viscous fingering, where the interface between two fluids is unstable
and develops highly-dynamic “finger-like” structures. A prominent cause for such
structures are setups where a fluid with lower viscosity (Fig. 1(a)–(c), left) is injected
into a fluid with higher viscosity (Fig. 1(a)–(c), right). To analyze these processes,
a straightforward approach employs traditional skeletonization techniques for ex-
tracting the topology of each time step independently. Here, we employ iterative
thinning [12]. However, like all skeletonization techniques, the resulting skeletons
tend to be to temporally incoherent because the extraction is susceptible to small
variations and noise. We present persistence concepts to address these issues and
provide insight into the underlying processes.
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(a) t = 8 (b) t = 30 (c) t = 70
Fig. 1 Selected time steps (a)–(c) of a 2D viscous fingering simulation [1], with extracted skele-
ton (overlay). We used a conservative threshold for segmentation to suppress dark-red parts.

2 Viscous Fingering

Even though the methods described in this paper are generically applicable to time-
varying skeletons, we focus our analysis on skeletons that we extracted from vis-
cous fingering processes. The term viscous fingering refers to the formation of
structural patterns that appear when liquids of different viscosity are mixed. Under
the right conditions, e.g., when water is being injected into glycerine, branch-like
structures—the eponymous viscous fingers—begin to appear and permeate through
the liquid of higher viscosity. Understanding the formation of these patterns is a pre-
requisite for the description of many natural processes, such as groundwater flows.
Consequently, researchers are interested in setting up simulations that closely match
the observations of their experiments.

Since each simulation uses a different set of parameters, summary statistics and
comparative visualizations are required in order to assess how well a simulation
describes an experiment. As a first step towards analyzing these highly-complex
dynamics, we extract skeletons for each time step of a simulation or an experiment.
In this paper, we introduce several concepts for assessing the inherent dynamics of
these skeletons, permitting a comparative analysis.

Other methods In the context of analyzing viscous fingering, several other tech-
niques exist. An approach by Lukasczyk et al. [13], for example, uses tracking
graphs to visualize the spatio-temporal behavior of such processes. In a more gen-
eral context, discrete Morse theory could be applied to detect persistent structures in
gray-scale images [6]. The applicability of these approaches hinges on the data qual-
ity, however. Our experimental data suffers from a high noise level in which many
smaller fingers cannot be easily identified by the other approaches. This is why we
decided to focus on conceptually simpler skeletonization techniques for now.

3 Overview and Methods

In this paper, we implement a pipeline that comprises the whole range of the analysis
process of a series of time-varying skeletons. Fig. 2 shows a schematic illustration
and points to the corresponding sections in which individual parts are described. We
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Skeleton extraction Time propagation Persistence calculation Analysis

Fig. 2 The basic pipeline of our approach. The first step, i.e., skeleton extraction, strongly depends
on the desired application. Likewise, the analysis step can comprise different diagrams, summary
statistics, and goals. Individual parts of the pipeline are replaceable, making our approach highly
generic. Our current implementation uses an algorithm by Zhang and Suen [16] for skeleton ex-
traction (Sec. 3.1.3). The subsequent propagation of creation times between time steps along all
branches of the skeleton uses the methods described in the same section. From this extended skele-
ton, Sec. 3.2 describes how to derive numerous persistence diagrams. Following this, we define
multiple activity indicators based on these diagrams in Sec. 3.3. Finally, Sec. 4 presents an analy-
sis of different data sets under different aspects.

provide an open-source implementation (in Python) of the pipeline on GitHub1.
The repository includes all examples, data, and instructions on how to reproduce our
experiments. For the analysis of our persistence diagrams, we implemented tools
that build upon Aleph2, an open-source library for persistent homology calcula-
tions. We stress that our implementation is a proof of concept. Its computational
bottleneck is the brute-force matching (which could be improved by using an ap-
proximate matching algorithm) that is required as a precursor to creation time prop-
agation. More precisely, calculating all matches over all time steps takes between
2 h and 6 h, while the subsequent propagation of creation times takes 82 s (example
data, 839px× 396px, 84 time steps), 384 s (measured data, 722px× 1304px, 58
time steps), and 524 s (simulation data, 1500px× 1000px, 37 time steps). Finally,
persistence diagram creation requires 100 s (example data), 183 s (simulation data),
and 926 s (measured data), respectively. The time for calculating activity indica-
tors (Sec. 3.3), e.g., total persistence, is negligible, as the persistence diagrams only
contain a few hundred points. Please refer to Sec. 4 for more information about the
individual data sets.

Subsequently, we will first briefly discuss skeleton extraction—both in terms of
sets of pixels as well as in terms of graphs. Next, we explain the necessary steps for
obtaining information about the “creation time” of pixels and how to propagate said
information over all time steps in order to obtain evolution information. Based on
this, we derive and exemplify several concepts motivated by topological persistence.

1 https://github.com/Submanifold/Skeleton_Persistence
2 https://github.com/Submanifold/Aleph
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3.1 Skeleton Extraction and Propagation of Pixel Creation Time

Iterative thinning provides skeletons from binary images in a pixel-based format.
A sequence of skeletons thus gives rise to a sequence of pixel sets P0, P1, . . . ,
Pk, each corresponding to a time step t0, t1, . . . , tk. We employ 8-neighborhood
connectivity around each pixel, i.e., the set of all neighbors including the diagonal
ones, to convert each pixel set Pi into a graph Gi. Depending on the degree d of
each vertex in Gi, we can classify each pixel as being either a regular point (d = 2),
a start/end point (d = 1), or a branch point (d ≥ 3). This also permits us to define
segments formed by connected subsets of regular pixels.

3.1.1 Pixel Matching

Since the skeleton changes over time, we need to characterize the creation time of
each pixel, i.e., the time step ti in which it initially appears. Moreover, we want to
permit that a pixel “moves” slightly between two consecutive time steps in order
to ensure that drifts of the skeleton can be compensated. Our experiments indicate
that it is possible to obtain consistent creation times for the pixels based on their
nearest neighbors, regardless of whether the simulation suffers from a coarse time
resolution or not. Given two time steps ti, ti+1, we assign every pixel p ∈Pi the
pixel p′ ∈Pi+1 that satisfies

p′ := arg min
q∈Pi+1

dist(p,q), (1)

where dist(·) is the Euclidean distance. Likewise, we assign every pixel in Pi+1 its
nearest neighbor in Pi, which represents a match from Pi+1 to Pi. This yields a
set of directed matches between Pi and Pi+1. Each pixel is guaranteed to occur
at least once in the set. We refer to matches from Pi to Pi+1 as forward matches,
while we refer to matches in the other direction as backward matches. A match is
unique if the forward and backward match connect the same pair of pixels. Fig. 3
depicts matches for selected time steps and illustrates the movement of pixels.

3.1.2 Pixel Classification

We now classify each pixel in time step ti+1 according to the forward matches be-
tween Pi and Pi+1, as well as the backward matches between Pi and Pi+1. We
call a pixel known if their match is unique, i.e., there is exactly one forward and one
backward match that relate the same pixels with each other. Known pixels are pix-
els that are already present in a previous time step with a unique counterpart in time
step ti+1. Similarly, we refer to a pixel in Pi+1 as a growth pixel if there is a unique
match in Pi and at most one forward match from some other pixel in Pi. Growth
pixels indicate that new structures have been created in time step ti+1, or that exist-
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(a) t = 72 (b) t = 73 (c) t = 74
Fig. 3 An excerpt demonstrating matches between two time steps. Some of the pixels of the current
time step (blue circles) overlap with pixels from the previous time step (red crosses). We use arrows
to indicate forward and backward matches.

(a) t = 68 (b) t = 69 (c) t = 70
Fig. 4 Classification of all pixels into growth pixels , decay pixels , known pixels , and irregular
pixels . The abrupt appearance (b) or disappearance (c) of segments is a challenge for skeleton
extraction and tracking.

ing structures have been subject to a deformation. The counterpart to a growth pixel
is a decay pixel in Pi+1, which is defined by a unique match in Pi and at most one
backward match to the same pixel in Pi from another pixel in Pi+1. Decay pixels
indicate that a skeleton region has been lost in time step ti+1. We refer to all other
pixels as irregular. In our experiments, irregular pixels, which are caused by small
shifts between consecutive time steps, comprise about 60% of all pixels. As we sub-
sequently demonstrate, we are able to assign consistent creation times despite the
prevalence of irregular pixels. Fig. 4 depicts classified pixels for consecutive time
steps. It also demonstrates that skeletons may be temporally incoherent: pixels in
region (i) only exist for a single time step, forming long but short-lived segments.
Pixels in region (ii), by contrast, form short but long-lived segments. We want to
filter out segments in region (i), while keeping segments in region (ii) intact. This
requires knowledge about pixel creation times.

3.1.3 Propagating Creation Times

Initially, each pixel in P0 is assigned a creation time of 0. Next, we classify the pix-
els in each pair of consecutive time steps ti and ti+1 as described above. For known
pixels, we re-use the creation time of ti. For growth pixels, we distinguish two dif-
ferent cases: (i) If a growth pixel in time step ti+1 is not the target of a forward match
from time step ti, we consider it to be a new pixel and hence assign it a creation time
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(a) t = 68 (b) t = 69 (c) t = 70
Fig. 5 Propagated age per pixel, using a white–red color map. The skeleton inconsistencies in
region (i) impede the temporal coherence of neighboring pixels.

of ti+1. (ii) Else, we re-use the creation time just as for known pixels. This proce-
dure ensures that we are conservative with assigning “new” creation times; it turns
out that a small number of growth pixels with increased creation times is sufficient
for propagating time information throughout the data. For all other types of pixels,
we assign them the minimum of all creation times of their respective matches from
Pi, ignoring the direction of the matching. Again, this is a conservative choice that
reduces the impact of noise in the data.

Thus, every pixel in every time step has been assigned a creation time. This time
refers to the first time step in which the pixel was unambiguously identified and
appeared. By propagating the creation time, we ensure that skeletons are allowed
to exhibit some movement between consecutive time steps. Fig. 5 depicts the cre-
ation times for several time steps. For temporally coherent skeletons, recent creation
times (shown in red) should only appear at the end of new “fingers”. We can see that
the brief appearance of segments causes inconsistencies. Ideally, the creation time
of pixels should vary continuously among a segment.

Improving temporal coherence To improve temporal coherence, i.e, creation
times of adjacent pixels, we observe that inconsistencies are mainly caused by a
small number of growth pixels along a segment. These are a consequence of a “drift”
in pixel positions over subsequent time steps, which our naive matching algorithm
cannot compensate for. A simple neighborhood-based strategy is capable of increas-
ing coherence, though: for each growth pixel, we evaluate the creation times in its 8-
neighborhood. If more than 50% of the neighbors have a different creation time than
the current pixel, we replace its creation time by the mode of its neighbors’ creation
times. This strategy is reminiscent of mean shift smoothing [5]. Fig. 6 compares the
original and improved creation times for two time steps. Ideally, all segments should
exhibit a gradient-like behavior, indicating that their structures have been expanded
continuously. We see that this is only true for the longest segments. Erroneous cre-
ation times are an inevitable byproduct of instabilities in skeleton extraction, which
can be mitigated through persistence-based concepts.
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(a) t = 42 (no coherence) (b) t = 84 (no coherence)

(c) t = 42 (coherence) (d) t = 84 (coherence)
Fig. 6 Pixel creation times at two selected time steps. Recent creation times are shown in shades
of red. We can see that the “front” of the fingers is always recent, while the oldest structures have
been created at the very beginning. This example also demonstrates how the temporal coherence
of creation times can be improved.

3.2 Persistence Concepts

Persistence is a concept introduced by Edelsbrunner et al. [7, 8, 9]. It yields a
measure of the range (or scale) at which topological features occur in data and is
commonly employed to filter or simplify complex multivariate data sets [15]. For
skeletons, i.e., graphs, the standard topological features are well known, compris-
ing connected components and cycles. While these features are useful in classify-
ing complex networks [3], for example, they do not provide sufficient information
about skeleton evolution processes because they cannot capture the growth of seg-
ments. Hence, instead of adopting this viewpoint, we derive several concepts that
are inspired by the notion of persistence. A crucial ingredient for this purpose is the
availability of creation times for every pixel in every time step.

3.2.1 Branch Inconsistency

Using the graph Gi for a time step ti, we know which pixels are branch points, i.e.,
points where multiple segments meet. Let cb be the creation time of such a branch
point, and let c1, c2, . . . refer to the creation times of the first adjacent point along
each of the segments meeting at the branch point. We define the branch inconsis-
tency for each branch–segment pair as |ci−cb|, and we refer to the diagram formed
by the points (cb,ci) as the branch persistence diagram. The number of points in
the branch inconsistency diagram indicates how many new branches are being cre-
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(a) Branch inconsistency (b) Skeleton (c) Skeleton, filtered
Fig. 7 Branch inconsistency diagram and branch inconsistency values on the skeleton for t = 69.
The diagram indicates that most branches are temporally coherent. Some of them are removed
from the diagonal (or below the diagonal), which may either indicate inconsistencies in skeleton
tracking or cycles. Removing segments with a branch inconsistency ≥ 5 (red dots in the diagram,
dark red segments in the skeleton) can be used to filter the skeleton.

ated in one time step. Moreover, it can be used to prune away undesired segments
in a skeleton: if the branch inconsistency of a given segment is large, the segment
is likely an artifact of the skeletonization process—thinning algorithms often create
segments that only exist for a single time step. Overall, those segments thus have a
late creation time. In contrast to the persistence diagrams in topological data analy-
sis, where closeness to the diagonal indicates noise, here, points that are away from
the diagonal correspond to erroneous segments in the data. Points below the diago-
nal are the result of inconsistent creation times for some segments—a branch cannot
be created before its branch point.

Fig. 7 shows the branch inconsistency diagram and colored skeletons for t =
69. It also depicts how to filter segments with a large branch inconsistency, which
already decreases the number of noisy segments. Please refer to the accompanying
video for all branch inconsistency values.

3.2.2 Age Persistence

Analogously to branch inconsistency, we obtain an age persistence diagram for each
branch–segment pair when we use the maximum creation time of points along each
segment. Age persistence is capable of measuring whether a segment is young or old
with respect to its branch point. Here, the “persistence” of each point is an indicator
of how much the skeleton grows over multiple time steps: if segments stagnate, their
points remain at the same distance from the diagonal. If segments continue to grow,
however, their points will move away from the diagonal.

Fig. 8 shows the age persistence diagram and the age persistence values on the
skeleton for t = 69. The filtered skeleton only contains the most active segments,
which facilitates tracking. We can combine branch inconsistency and age persis-
tence to remove fewer segments than in Fig. 7(c). For example, we could remove
segments that correspond to points below the diagonal of the branch inconsistency
diagram and keep those for which both branch inconsistency and age persistence
are high. These segments commonly correspond to cycles that were formed during
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(a) Age persistence (b) Skeleton (c) Skeleton, filtered
Fig. 8 Age persistence diagram and age persistence values on the skeleton for t = 69. Numerous
segments towards the “front” of the fingers appear to be active here. Removing all segments whose
age persistence is ≤ 5 (red points in the diagram) leaves us with the most active segments.

(a) (b)
Fig. 9 (a) Filtering segments using branch inconsistency may destroy longer segments. (b) If we
combine both branch inconsistency and age persistence, keeping only those segments whose age
persistence is high or whose branch inconsistency is low, we can improve the filter results by
removing noisy segments while keeping more cycles intact.

the evolution of the skeleton. An isolated analysis of branch inconsistency is unable
to detect them. Fig. 9 depicts the results of such a combined filtering operation.

3.2.3 Growth Persistence

We define the growth persistence of a segment in Gi as the difference between the
maximum creation time tmax of its pixels and the current time step ti. Intuitively, this
can be thought of performing “time filtration” of a simplicial complex, in which sim-
plices may be created and destroyed (notice that such a description would require
zigzag persistence for general simplicial complexes). A small value in this quan-
tity indicates that the segment is still growing, while larger values refer to segments
that stagnate. Growth persistence is useful to highlight segments that are relevant
for tracking in viscous fingering processes. In contrast to the previously-defined
persistence concepts, growth persistence is only defined per segment and does not
afford a description in terms of a persistence diagram. Fig. 10 depicts the growth
persistence of several time steps. Red segments are growing fast or have undergone
recent changes, such as the creation of cycles. A low branch persistence in segments,
coupled with a low growth persistence corresponds to features that are “active” dur-
ing skeleton evolution. Please refer to the accompanying video for the evolution of
growth persistence.
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(a) t = 21 (b) t = 42 (c) t = 84
Fig. 10 Growth persistence values. Red segments are highly active in the evolution of the skeleton.
In this example, red segments are mostly those that are at the tips of individual “fingers”.

3.3 Activity Indicators

In order to capture the dynamics of skeleton evolution, we require a set of activity
indicators. They are based on the previously-defined concepts and can be used to
quickly summarize a time series of evolving skeletons.

3.3.1 Total Persistence

There are already various summary statistics for persistence diagrams. The 2nd-
order total persistence pers(D) [4] of a persistence diagram D is defined as

pers(D)2 :=

(
∑

(c,d)∈D
pers2(c,d)

) 1
2

, (2)

i.e., the sum of powers of the individual persistence values (i.e. coordinate differ-
ences) of the diagram. Total persistence was already successfully used to assess
topological activity in multivariate clustering algorithms [14].

Here, the interpretation of total persistence depends on the diagram for which we
compute it. Recall that in a branch inconsistency diagram, points of high “persis-
tence” indicate inconsistencies in branching behavior. Total persistence thus helps
detect anomalies in the data; see Fig. 12 for a comparison of total branch persis-
tence in different data sets. For age persistence, by contrast, high persistence values
show that a skeleton segment is still actively changing. The total age persistence
hence characterizes the dynamics of the data, e.g., whether many or few segments
are active at each time step. Fig. 14 depicts a comparison of total age persistence in
different data sets.

3.3.2 Vivacity

We also want to measure the “vivacity” of a viscous fingering process. To this end,
we employ the growth persistence values. Given a growth threshold tG, we count all
growth pixels with persG ≤ tG and divide them by the total number of pixels in the
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(a) Measured data set, t = 33 (b) Simulation data set, t = 26
Fig. 11 Selected still images from the two remaining data sets. The measured data in (a) exhibits
artifacts (parallel lines) that are caused by the experimental setup. The simulation data (b), by
contrast, does not contain any noise.

given time step. This yields a measure of how much “mass” is being created at every
time step of the process. Similarly, we can calculate vivacity based on segments in
the data. However, we found that this does not have a significant effect on the results,
so we refrain from showing the resulting curves. Fig. 15 depicts vivacity curves for
different data sets with tG = 10.

4 Analysis

Having defined a variety of persistence-based concepts, we now briefly discuss their
utility in analyzing time-varying skeleton evolution. In the following, we analyze
three different data sets: (i) the example data set that we used to illustrate all con-
cepts, (ii) a measured data set, corresponding to a slowly-evolving viscous fingering
process, (iii) and a simulation of the example data set. Fig. 11 depicts individual
frames of the latter two data sets. The measured data set is characterized by a vis-
cous fingering process whose fingers evolve rather slowly over time. Moreover, this
experiment, which was performed over several days, does not exhibit many fingers.
The simulation data, by contrast, aims to reproduce the dynamics found in the ex-
ample data set; hence, it contains numerous fast-growing fingers. Please refer to the
accompanying videos for more details.

Anomaly detection To detect anomalies in skeleton extraction and tracking, we
calculate the total persistence of the branch inconsistency diagram. Fig. 12 com-
pares the values for all data sets. We observe that the example data set, Fig. 12(a),
exhibits many “jumps” in branch inconsistency. These are time steps at which the
skeleton (briefly) becomes inconsistent, e.g., because a large number of segments
disappears, or many small cycles are created. At t = 43 and t = 72 (both local max-
ima in the diagram), for example, we observe changes in the number of cycles as
well as the appearance of numerous segments of various lengths, which makes it
harder to assign consistent creation times according to Sec. 3.1. Fig. 13 depicts the
changes in skeleton topology at these time steps. The other two data sets contain
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Fig. 12 A comparison of total persistence of the branch inconsistency diagram for three different
data sets. The first data set (a) exhibits more anomalies; these are indicated by “jumps” in the total
persistence curve.

(a) t = 43 (b) t = 72
Fig. 13 Comparing the previous (gray) and the current time step (red) based on total persistence
of the branch inconsistency diagram helps uncover problems with skeleton extraction.

fewer anomalies. For the measured data, this is caused by lower propagation veloc-
ities and fewer “fingers” in the data. For the simulation data, this is due to a better
separation of individual fingers, caused by the synthetic origin of the data.

Active branches We use total age persistence to assess the rate at which exist-
ing branches move. Fig. 14 compares the data sets, showing both the original to-
tal age persistence values as well as a smooth estimate, obtained by fitting Bézier
curves [10] to the sample points. In Fig. 14(c), the simulated origin of the data is
evident: while the other data sets exhibit changes in the growth rate of total age
persistence, the simulation data clearly exhibits almost constant growth. Moreover,
we observe that the measured data in Fig. 14(b) has a period of constant growth for
t ∈ [20,40], while the example data displays a slightly diminished growth rate for
t ∈ [25,65], only to pick up at the end. Age persistence may thus be used to compare
the characteristics of different skeleton evolution processes.

Quantifying dissimilarity To quickly quantify the dissimilarity between different
curves, e.g., the vivacity curves that we defined in Sec. 3.3.2, we can use dynamic
time warping [2], a technique from dynamic programming that is able to compensate
for different sampling frequencies and different simulation lengths. Fig. 15 depicts
the vivacity curves of the data sets. We can see that the measured data in Fig. 15(b) is
characterized by a slower process in which new mass is continuously being injected
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Fig. 14 A comparison of total age persistence for the three different data sets, along with a smooth
estimate for showing trends.
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Fig. 15 Vivacity curves (pixel-based) for the three different data sets. At a glance, the curves permit
comparing the dynamics of each process. The sampling frequencies are different, necessitating the
use of dynamic time warping.

to the system. Hence, its vivacity does not decrease steeply as that of the example
data in Fig. 15(a). The vivacity curve for the simulation, shown in Fig. 15(c), appears
to differ from the remaining curves. As a consequence, we can use these curves in
visual comparison tasks and distinguish between different (measured) experiments
and simulations. The dynamic time warping distance helps quantify this assumption.
We have dist(a,b) ≈ 442, dist(a,c) ≈ 1135, and dist(b,c) ≈ 173. This indicates
that the characteristics of the simulation in Fig. 15(c) differ from those found in a
real-world viscous fingering process, shown in Fig. 15(a), while being reasonably
close to another measured experiment, which is depicted by Fig. 15(b). Vivacity
curves may thus be used for parameter tuning of simulations in order to obtain better
approximations to measured data.

5 Conclusion

Driven by the need for a coherent analysis of time-varying skeletons, we developed
different concepts inspired by topological persistence in this paper. We showed how
to improve the consistency of tracking algorithms between consecutive time steps.
Moreover, we demonstrated the utility of our novel concepts for different purposes,
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including the persistence-based filtering of skeletons, anomaly detection, and char-
acterization of dynamic processes.

Nonetheless, we envision numerous other avenues for future research. For ex-
ample, the propagation velocity of structures in the data may be of interest in many
applications. We also plan to provide a detailed analysis of viscous fingering, includ-
ing domain expert feedback, and extend persistence to physical concepts within this
context. More generally, our novel persistence-inspired concepts can also be used
in other domains, such as the analysis of motion capture data (which heavily relies
on skeletonization techniques) or time-varying point geometrical point clouds, for
which novel skeletonization techniques were recently developed [11].
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