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Motivation
Different functions may have identical persistence diagrams
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Motivation, continued
Identical persistence diagrams

• Generic issue: occurs both in sublevel set and superlevel set calculations
• Solution: add additional (geometrical) information, e.g. merge trees
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Assumptions

• Pairing of connected components (zero-dimensional persistent homology)
• Pairing uses “elder rule”: The “older” connected component persists, i.e. the
one with the smaller index with respect to the filtration

• In the example below, component a persists, but component b is
destroyed by the merge at c

a
b

a
b

c

a

3 / 23



Regular persistence hierarchy

b
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Add b→ a to the hierarchy. Notice that the
hierarchy uses directed edges.

Require: A domain D
Require: A function f : D→ R

U← ∅
Sort the function values of f in ascending order
for function value y of f do

if y is a local minimum then
Create a new connected component in U

else if y is a local maximum or a saddle then
Use U to merge the two connected components
Let y′ refer to the creator of the older component
Create the edge (y′ , y) in the hierarchy

else
Use U to add y to the current connected

component
end if

end for
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Regular persistence hierarchy, continued

• Introduced by Bauer, 2011, “Persistence in discrete Morse theory”
• By definition, the hierarchy forms a directed acyclic graph
• Original motivation: determining cancellation sequences of Morse functions
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Problem
Lack of expressiveness
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Problem
Lack of expressiveness
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Key observation

• Not all merges in the sublevel sets are equal!
• Take connectivity with respect to other critical points into account.
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Sublevel set connectivity
Use interlevel set
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Sublevel set connectivity
Use interlevel set
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Ll,u( f ) := L−u ( f ) \ L−l ( f ) = {x ∈ D | l ≤ f (x) ≤ u}
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Sublevel set connectivity
Use interlevel set
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Ll,u( f ) := L−u ( f ) \ L−l ( f ) = {x ∈ D | l ≤ f (x) ≤ u}

• Lb,e( f ) has two connected components for the function, but only one for
the function

• Hence: use the same level for the function, but insert pair on lower level
for the function
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Sublevel set connectivity
Use interlevel set
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Algorithm
Excerpt; shortened notation

1: for function value y of f do
2: if y is a local maximum then
3: Use U to merge the two connected components
4: Let C1 and C2 be the two components at y (w.l.o.g. let C1 be the older one)
5: if both components have a trivial critical value then
6: Create the edge (C1, C2) in the hierarchy
7: else
8: Let c1, c2 be the critical values of C1, C2
9: Create the interlevel set L := Lc2,y( f )
10: if shortest path between c1, c2 in L contains no other critical points then
11: Create edge (c1, y) in the hierarchy
12: end if
13: end if
14: end if
15: end for
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Necessity of the connectivity check
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In one dimension (segments), a simple connectivity check is sufficient. In two
dimensions (isolines), both interlevel sets are connected, though!
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Implications

• Extended persistence hierarchy usually has more levels than the regular one
• The calculation incorporates a modicum of geometrical information

Open questions

• Is this connectivity check sufficiently distinctive?
• What is the relation to “basins of attraction” in discrete Morse theory?
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Comparison with other tree-based concepts
In the paper

• Regular persistence hierarchy can be obtained via branch decomposition
• Merge trees are discriminative, but their branch decomposition may still
coincide for different functions

• Hence, extended persistence hierarchy cannot be derived that way
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Robustness
Merge tree vs. extended persistence hierarchy, colored by persistence

Merge tree

Extended persistence hierarchy
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Application
Ranks

How many nodes can be reached from a given node u in the (extended)
persistence hierarchy H?

rank(u) := card {v ∈ H | u ∼ v}
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Application
Stability measure

Overarching question
How stable is the location of a critical point? Persistence pairs are a continuous
function of the input data, but their location is not.

Previous work
Bendich & Bubenik, 2015, “Stabilizing the output of persistent homology
computations”.
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Stability measure
Example (superlevel sets)
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Stability measure
Example, perturbed
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Stability measure
Formal definition

For an edge e := {(σ, τ), (σ′, τ′)} in the hierarchy H:

stab(e) := max
{
| f (σ)− f (σ′)|, | f (τ)− f (τ′)|

}
(1)

For a vertex v:

stab(v) := min
{

mine=(v,w)∈H stab(e), pers(v)
}

(2)

Here: stab
(
e
)
� pers

(
e
)
for the second hierarchy.

Using the minimum of all stability values is an extremely conservative
worst-case assumption!
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Implications
Another criterion for distinguishing between functions with equal persistence
diagrams, based on worst-case location stability of creators of critical pairs.

Open questions

• How useful is this assumption?
• Does it characterize all perturbations of critical points?
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Application
Dissimilarity measure

Use existing tree edit distance algorithms. Cost function for relabeling a node:

cost1 = max
(
|c1 − c2|, |d1 − d2|

)
(3)

Cost function for deleting or inserting a node:

cost2 = pers(c, d) = |d− c|, (4)

The choice of these costs is somewhat “natural” as the L∞-distance is used for
bottleneck distance calculations, for example.
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Advantages of this dissimilarity measure

• Complexity of O
(
n2m log m

)
, where n is number of nodes in smaller

hierarchy.
• Bottleneck distance

• O
(
(n + m)3) (naïve)

• O
(
(n + m)1.5 log(n + m)

)
(Kerber et al., “Geometry helps to compare

persistence diagrams”)
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Results
Time-varying scalar field (climate model simulation)
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Results
Dissimilarity measure in comparison with second Wasserstein distance
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Conclusion

An expressive novel hierarchy for relating zero-dimensional persistence pairs.

Open questions

• How to formalize the properties of the extended persistence hierarchy?
• Is it possible to extend the hierarchy to higher-dimensional topological
features?
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