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Abstract High-dimensional data sets commonly occur in various application do-

mains. They are often analysed using dimensionality reduction methods, such as

principal component analysis or multidimensional scaling. To ascertain the fidelity

of a particular embedding of a data set, users need to analyse its quality. For this

purpose, the literature knows numerous quality measures. Most of these measures

concentrate on a single aspect, such as preserving the relative distances of points,

while others aim to balance multiple aspects, such as intrusions and extrusions in

k-neighbourhoods. Faced with multiple quality measures with different ranges and

different value distributions, it is challenging to decide which aspects of a data set

are preserved best by an embedding. We propose an algorithm based on persistent

homology that permits the comparative analysis of different quality measures on

a given embedding, regardless of their ranges. Our method ranks quality measures

and provides local feedback about which parts of a data set are preserved by an em-

bedding. We demonstrate the use of our technique by analysing quality measures on

different embeddings of synthetic and real-world data sets.

1 Introduction

High-dimensional data sets are ubiquitous in most scientific disciplines today. By

including more variables, natural phenomena can be modelled and understood more

precisely. With an increasing amount of variables, visualization for exploratory data

analysis becomes more and more important. A common approach for visualizing

complex high-dimensional data employs dimensionality reduction methods: Users

have many useful choices available for embedding their data in low dimensions,

ranging from linear methods such as principal component analysis (PCA) over
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non-linear methods such as Isomap to stochastic embeddings such as t-distributed

stochastic neighbour embedding (t-SNE).

Since ground truth information is often unavailable, quality measures are re-

quired to judge how accurately a given method is able to retain a structural property

of the data set such as local neighbourhoods. Quality measures usually only assess a

single property of the data set. Given an embedding of a data set and several quality

measures, users often want to know about compromise solutions: For example, an

embedding that distorts local neighbourhoods somewhat but keeps the global struc-

ture of the data set intact might be preferable over an embedding that does not distort

local neighbourhoods but completely distorts the input data at a global scale.

For an embedding of a high-dimensional data set, we are thus interested in find-

ing out which properties (e.g. neighbourhoods, distances, etc.) of it are faithfully

retained. To this end, we analyse the agreement of multiple quality measures on the

data. Modelling each quality measure as a scalar field on the embedding, we are in-

terested in the regions of the highest error of a quality measure and hence decompose

each scalar field into regions defined by their maxima. Instead of having to compare

the quality measures per point, we compare only their decompositions, which are

much more stable with respect to noise. If two measures highlight the same re-

gions as having a low quality, their resulting decompositions will be very similar,

and we thus consider their behaviour on the data set to be similar. This implies that

their respective properties are retained to a similar extent. To measure similarity and

highlight areas in which different quality measures disagree the most, we use a sim-

ilarity measure and a graph matching algorithm. Using several real-world data sets,

we demonstrate how our method helps users determine which properties of a data

set have been respected by an embedding.

2 Related work

Multi-field data The task of comparing different scalar quality measures on a data

set is a particular instance of a multi-field problem. In this context, several meth-

ods already permit the comparison of scalar functions. Sauber et al. [18] used gra-

dient similarity measures and local correlation coefficients to analyse correlations

in scalar fields defined over (regular) 3D or 2D grids. Their approach quickly be-

comes computationally infeasible with a larger amount of scalar fields. Schneider

et al. [19, 20] used contour trees for comparing iso-surfaces in two scalar fields. To

define similarity between features, they use similarity measures based on the ap-

proximated contour volume as well as information-theoretic and graph clustering

methods. Their method is geared towards analysing fields for flow visualization and

requires cell-based grids, whereas our method is specifically targeting unstructured

data.

Scalar field topology and persistent homology Our method uses persistent ho-

mology to analyse the topological structure of quality measures on a data set. This
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approach is related to other methods from scalar field topology. Gerber et al. [11] use

inverse regression in Morse-Smale complexes to obtain a simplified visualization of

scalar functions on high-dimensional data. Their method is used for parameter stud-

ies but does not permit the comparison of multiple scalar fields. Chazal et al. [4]

decompose a scalar field of density values of a manifold into basins of attraction to

find stable clusters. Their algorithm does not allow for comparing clusters in dif-

ferent scalar fields but has well-defined stability guarantees that we will use in our

approach. Correa et al. [8] use sparse subsets of the Morse-Smale complex to vi-

sualize the structure of scalar fields. This approach complements our approach as a

visual aid for comparison but does not visualize features in different scalar fields.

Oesterling et al. [15] use join trees to visualize the behaviour of density functions on

high-dimensional point clouds. Their visualization yields a topological landscape in

which regions of similar density may be read off, or a landscape profile that repre-

sents clusters as peaks [16]. Both methods are not specifically suited for comparing

multiple scalar fields among each other. A complete decomposition of merges and

splits of contours in scalar fields is given by the contour tree [3]. Our method re-

quires a computation that is similar to the join tree, because we are only interested

in the maxima of a scalar field.

Dimensionality reduction An in-depth overview of state-of-the art dimensionality

reduction methods is given by van der Maaten et al. [14]. Lee and Verleysen [12]

survey numerous quality measures and show how the analysis of global quality mea-

sures helps in selecting from a set of different dimensionality reduction methods.

Bertini et al. [2] survey quality measures in the context of high-dimensional data

visualization. Quality measures are used to provide a “good” overview of a data set.

By contrast, our method assumes that the data set has already been embedded and

aims on communicating which structural properties are retained with respect to the

original data.

3 Quality measures

For the subsequent analysis in Sec. 5, we shall use two groups of local quality

measures: Distance-based measures and rank-based measures. The former are more

stable against small changes in the embedding whereas the latter are more stable

against large changes or linear scaling in the data [12]. In the following, we use

pointwise definitions of all quality measures for a data set of cardinality n. We also

transform their range such that high values indicate regions of low quality (hence,

the functions measure an error). Subsequently, di j refers to the original distances in

the high-dimensional space, while δi j refers to the distances in the embedded space.

Root-mean-square-error (RMSE) RMSE measures the average squared differ-

ence between the distances: f (xi) =
√

∑
n
j=1 (di j −δi j)

2 /n
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Kruskal’s stress In contrast to RMSE, this stress measure penalizes deviations in

small distances more than in large distances: f (xi) =
√

∑
n
j=1 (di j −δi j)

2 /∑
n
j=1 δ 2

i j

Residual variance The residual variance measures the complement of the ex-

plained variance between di j and δi j, using the linear correlation coefficient:

f (xi) = 1−R2({di0, . . . ,din},{δi0, . . . ,δin}) (1)

Spearman’s rank correlation By converting the distances di j and δi j to ranks ri j

and ρi j, respectively, this measure is more stable against outliers in the data and

invariant to linear scaling: f (xi) = 1−6∑
n
j=1 (ri j −ρi j)/

(

n
(

n2 −1
))

Neighbourhood loss This measure is agnostic to distances and requires an enu-

meration of the k nearest neighbours of a point both in the original space and the

embedded space, which we denote nk(i) and νk(i), respectively:

f (xi) = 1−|nk(i)∩νk(i)|/k (2)

Mean relative rank error (MRRE) MRRE measures the mean amount of rank

deviations using the k nearest neighbours of the point in both the original space

and the embedded space. Lee and Verleysen [12] developed MRRE to penalize two

common errors in embeddings, namely very distant points that intrude into the k-

neighbourhood of a point, as well as very close point that extrude from such a neigh-

bourhood.

Note that there are more measures available in literature [12, 14]. We have opted

for selecting the most common ones and aimed for those that are not specifically

optimized for a certain algorithm. Table 1 gives a short overview of the properties

they measure.

4 Methods

In the following, we will describe the components of our method. The main algo-

rithm is similar to the calculation of the join tree, but uses persistent homology to

Table 1 Properties that are measured by the quality measures

Measure Property

RMSE Average squared distance deviation

Kruskal’s stress Average squared distance deviation penalizing small deviations

Residual variance Correlation between original and embedded distances

Rank correlation Correlation between ranks of original and embedded distances

Neighbourhood loss Changes in k nearest neighbours; measure of group preservation

MRRE Extrusions and intrusions of k nearest neighbours
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obtain a criterion for the stability of maxima. We refer the reader to Edelsbrunner

and Harer [10] for a more detailed account of computational topology and persistent

homology.

4.1 Scalar field decomposition using persistent homology

Let D be a connected domain and f : D → R a scalar function such as a quality

measure. A natural way of summarizing this function for data analysis and compar-

ison is to detect its peaks and decompose the data according to the gradient of f ,

i.e. we decompose D into disjoint subsets consisting of all those points that reach

a certain peak when following the gradient. This approach is also known as mode-

seeking [5]; see Fig. 1, left, for a simple example. With discrete data, however,

mode-seeking approaches are known to be very unstable. To obtain a measure of

the stability of the detected peaks, we thus use persistent homology, an algorithm

from computational topology. Persistent homology summarizes data sets using their

topological features. Each topological feature is assigned a significance measure,

the persistence.

d

c c

d

d

c

Fig. 1 Left: By following the steepest ascent (shown as arrows on the abscissa), the domain of

f is decomposed into disjoint regions. The minima are the boundaries of a region. Right: The

persistence diagram of f . The distance from the diagonal is a measure of the stability of a peak.

4.1.1 The 1-dimensional case

Let D ⊆ R be our domain and f : D→ R a scalar function. We can use persistent

homology to describe connectivity changes in the superlevel sets of f , i.e. sets of the

form L+
c ( f ,c) = {x | f (x)≥ c} for c ∈R. We now traverse the function values of f

in decreasing order and keep track of how the connected components of f change.
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When we reach a new peak in f , i.e. a maximum of f , a new connected component

will be created. By contrast, when we reach a minimum, two connected components

are merged into one. We always merge the “younger” connected component (the one

with the smaller peak) into the “older” connected component (the one with the larger

peak) to ensure consistency [10, p. 150].

By keeping track of the merges, we obtain the persistence diagram. It contains a

point (c,d) for every connected component created at c = f (x) and merged into an

older connected component at d = f (x′). Since by definition of the superlevel sets,

c ≥ d, all points in the persistence diagram are located below the diagonal. Fig. 1

illustrates this process for a simple function with several peaks. The persistence of

a tuple (c,d) is given as c− d ≥ 0 and serves as a measure of significance. Peaks

that quickly get paired with higher peaks result from coarse samplings of a scalar

function, whereas peaks with a large difference between creation and destruction

may be assumed to represent real features in the data set—in Sec. 4.1.3 we describe

an algorithm for automatically finding a significance threshold.

4.1.2 The high-dimensional case

For a discrete set of unstructured points D ⊆ R
n, we need an auxiliary construc-

tion before calculating persistent homology. To obtain neighbourhoods from D, we

use a metric such as the Euclidean distance and a threshold ε to calculate the Rips

graph Rε of D. The Rips graph has a vertex set of V = {0,1, . . . , |D|} and an edge

set of E = {(u,v) | duv ≤ ε}, meaning that there is an edge between vertices u and

v if their distance (measured using the distance metric) is less than or equal to the

selected distance threshold. It endows the unstructured data set with connectivity

information, which we require for mode-seeking.

We now apply a decomposition algorithm of Chazal et al. [4] to the scalar field,

which proceeds analogously to the 1-dimensional example. The algorithm requires

that each vertex v of Rε has been assigned its corresponding scalar value f (v) and

has a peak-seeking and a merge phase:

Peak-seeking Traverse the vertices of Rε in decreasing order of their function

values. Connect each vertex to its neighbour with the largest function value. If

the function values of all neighbours are smaller than the one of the current ver-

tex, we have found a peak. The edges that are created by this step correspond to

discrete gradient lines of the scalar field in D. When all vertices have been tra-

versed, we have a collection of tree edges that decompose D into disjoint regions,

similar to the ones shown in Fig. 1.

Merging Traverse the vertices of Rε in decreasing order of their function val-

ues while maintaining a union-find data structure [6, pp. 561–568]. The root of

each entry in the data structure corresponds to the peak vertex of a connected

component. When arriving at an existing peak during the iteration, a new entry

is added to the data structure. Upon arriving at a vertex that is not a peak, we

again iterate over all neighbours. We merge neighbours that belong to peaks that

are lower than the current peak into our component. By contrast, we merge our
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current peak with the peaks of all neighbours that belong to higher peaks. This

changes the value of the current peak, which in turn might trigger other merges

with lower peaks again.

This algorithm is a reformulation of the upper-star filtration [10, pp. 164–165]

in persistent homology. We obtain the corresponding persistence diagram from the

algorithm by keeping track of the creation and destruction of components in the

merge phase. The peaks of infinite persistence yield the desired decomposition of

the domain. In order to have a fine-grained control about which peaks to consider

significant and which peaks to prune because they are unstable, Chazal et al. [4]

suggest merging peaks based on the differences in their persistence. Given a thresh-

old τ , merges in the second phase of the algorithm are only performed if the peak is

lower and the persistence of the peak, i.e. the difference between the peak function

value and the function value at the current vertex, is less than the threshold. This

procedure results in very stable regions [4]. Since τ affects which peaks are con-

sidered relevant and which peaks are considered noise by the algorithm, below we

present an algorithm for choosing it automatically, based on the input data.

Choosing ε Varying ε controls the connectivity of unstructured domain D of the

data set. Very small values for ε result in many discrete samples without connec-

tions. Very large values for ε , on the other hand, make Rε the complete graph on n

vertices. Since there is no single “correct” value for ε , several methods have proved

to be effective in practice [4, 7, 17]. We use the average distance of points to their

k nearest neighbours, for k ∈ [10,20], as an initial value for ε [17]. If this procedure

does not result in a connected graph, we add edges between the connected com-

ponents of the graph. These edges are assigned the medoid distance between the

connected components.

4.1.3 Threshold selection

Finding a suitable threshold τ involves checking the separation of points in the per-

sistence diagram. A result of Chazal et al. [4, Theorem 4.8] states that relevant

peaks can be extracted from the persistence diagram if it contains a band of a cer-

tain width (that depends on ε) that does not contain any points. This is the largest

empty region we can draw into the persistence diagram (see Fig. 2, middle). The dis-

tance to the diagonal from any point within this region is then an admissible value

for the threshold parameter τ , which remains stable over a large range.

The theorem makes assumptions about the structure and the sampling conditions

of the input data—both of which are unavailable for real-world data. Nonetheless,

we can apply a threshold selection process inspired by the theorem. The theorem

essentially searches for the largest empty area in a persistence diagram. If this area

is deemed large enough (which depends on assumptions about the input data and

the function values of the Rips graph), the relevant peaks can be extracted with high

probability. We can simulate this decision process by searching for the largest empty

area in a persistence diagram and relating its size to the persistence values.
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More precisely, we transform the coordinate system of the persistence diagram

by a rotation of π/4, which ensures that the diagonal becomes the new abscissa

of the coordinate system. In this transformed coordinate system, we sweep over

all points by descending y-value and keep track of the vertical distance between

subsequent points. Using the largest vertical distance—which is the width of the

desired empty region—and the y-coordinate at which it was detected, we obtain a

potential value for the threshold parameter τ . We then calculate the ratio of the width

of the largest empty region to the mean width of all empty regions in the persistence

diagram. In our experiments, we found that a ratio of at least 4 results in useful

and stable thresholds for τ . Smaller ratios are indicative of much noise and may

require manual selections via persistence diagrams. In each of our experiments, for

instance, automated threshold selection only failed for at most one out of the six

quality measures.

4.2 Similarity measure & quality visualization

As a result of the scalar field decomposition algorithm, we are given a set of disjoint

regions. We now want to compare the similarity between two such regions over

different scalar fields. Given two regions A = {a1, . . . ,ak} and B = {b1, . . . ,bl},

where each a and b refers to a vertex in the scalar field, we calculate their similarity

using the Jaccard index, i.e.

J(A,B) = |A∩B|/|A∪B| ∈ [0,1]. (3)

Inspired by the bottleneck distance and Wasserstein distance calculations between

persistence diagrams [10, pp. 229–236], we propose an assignment problem for as-

sessing the global degree of similarity between two scalar fields. We define the cost

between two regions as 1− J(A,B), meaning that we want to penalize regions that

do not overlap. To account for different numbers of regions in two scalar fields,

we include dummy regions so that a region may also be matched with no region
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Fig. 2 A noisy scalar field (left), its corresponding persistence diagram (middle) with the region

of largest separation, and the resulting decomposition (right). Our algorithm suggests a threshold

of τ ≈ 0.33. The decomposition remains stable for τ ∈ [0.18,0.48].
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from the other scalar field. The total cost of the assignment problem serves as an

indicator of how much the decompositions calculated from two scalar fields differ.

The pairwise total costs between two scalar fields yields a matrix of pairwise dis-

tances. Using a 1-dimensional PCA of this matrix, we obtain a linear ordering of the

scalar fields which reflects their respective distances—similar scalar fields are thus

placed in proximity to each other. This allows us to read off which properties of an

embedding are most likely retained.

Note that the Jaccard index is not capable of differentiating between all functions.

It is possible to have two very different functions whose topological decompositions

are very similar. We did not encounter this in our experiments, though.

Local similarity scatterplot To provide a more local degree of similarity assess-

ment, we select a reference scalar field. We now solve the assignment problem for

each remaining scalar field and keep track of the costs for matching all regions in

the reference field. We then visualize the average assignment costs of the refer-

ence field using three colours (red, orange, green; each corresponding to 33% of the

value range) on the embedding. In the optimal case, all other scalar fields result in

the same decomposition as the reference scalar field—the visualization will thus not

highlight any region. Green regions indicate an (almost) perfect agreement with all

other quality measures. Orange regions show that there are mild differences to the

other measures, whereas red regions highlight regions that are severely mismatched

with the remaining measures—thereby indicating that a region is unique and does

not occur often in the other scalar fields.

5 Results

In the subsequent data sets, we assume that the user has chosen a property that needs

to be minimized by the embedding, e.g. stress. With this in mind, users can choose

a dimensionality reduction scheme that minimizes this measure on a global scale.

We now have the additional task of finding out whether other measures are retained

as well on the data. As a data pre-processing step, we normalize the scalar values of

each quality measure to [0,1] such that 0 represents no error (highest quality) and 1

represents the maximum error (lowest quality). This is only required to ensure that

the scales of different persistence diagram are more easily comparable among each

other.

5.1 Swiss roll

The Swiss roll data set is a classical data set that was introduced by Tenenbaum et

al. [21] as an example of how non-linear embedding methods (Isomap) are able to

outperform classical linear embeddings (PCA) on certain data sets. The data set con-
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sists of a “curled up” plane. Isomap is, by construction, one of the few algorithms

capable of embedding this data set properly. We thus work with quality measures

on the Isomap embedding. Fig. 3, left, shows the embedding of the data set. We

apply our algorithm on the scalar fields induced by the quality measures and choose

the threshold automatically. We observe that the distance-based quality measures

are defined by exhibiting comparatively large errors along the bottom and the top

of the embedded data, while the middle region contains almost no errors. The range

of these errors is very small, though. This effect is caused by the unwrapping that

distorts distances on a global scale. The same effect occurs somewhat less obvi-

ously in the two rank-based quality measures. Here, the impact of the unwrapping

is somewhat mitigated by the local neighbourhood size—although we now have the

additional error source of small changes in neighbourhoods. Our automated thresh-

old selection results in the same decomposition of the data, though. The measures

hence exhibit a very similar behaviour on the data set, proving that Isomap preserves

their properties to the same extent. Combined with the knowledge about the small

range of the errors, we thus conclude that Isomap yields a perfect embedding of the

Swiss roll.

5.2 Handwritten digits

We use the Optical Recognition of Handwritten Digits data sets from the UCI

Machine Learning Repository [1]. The data set consists of 5620 instances of 64-

dimensional feature vectors describing the handwritten digits of multiple writers.

We will compare the behaviour of different quality measures on a linear embed-

ding (PCA) and on a non-linear embedding (t-SNE) of the data.

PCA All quality measures on this data are rated similarly by our algorithm. We

thus omit the visualization of the relative distances. Fig. 4 shows a selection of

different quality measures for this data set. All exhibit a large spread in their value

range, indicating that the errors are substantial. Except for MRRE, all measures

have a single region of varying size in the middle of the data set. MRRE, on the

Q
u
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it
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low

high

Original data Stress & decomposition MRRE & decomposition Local similarity

Fig. 3 Swiss roll and two example measures with their decompositions. The distribution of max-

ima in MRRE is not apparent in the scatterplot. Excluding values below 30% of the range displays

this behaviour better. Our decomposition picks up on the fact that the error is maximal in the bottom

and top region of the embedding, just as for the other quality measures.
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other hand, seems to contain multiple smaller peaks but not a single expressive

region. Our decomposition shows that due to the higher baseline error in the quality

measure, the detected peaks do not have a sufficiently high persistence. Thus, the

decomposition of all measures results in a single large region. By assigning labels

to the data set (Fig. 4, bottom), we see that they have their pronounced maximum

around the region of the digits “5”, “8”, and “9”, as this region is not well-separated

by PCA. PCA for this data set is thus a typical example of a compromise solution:

The embedding contains high errors in all quality measures (i.e. its overall quality

is rather low), but the errors accumulate in a single known region in all quality

measure.

t-SNE The relative distances of the different quality measures (Fig. 5, top) show

that three measures (MRRE, rank correlation, and residual variance) are very sim-

ilar: With a high baseline error, they only have one significant peak in each of the

regions of the embedding. For the neighbourhood loss measure, we find only one

significant peak in the marked region, i.e. it does not separate into two smaller sub-

regions. The stress measure yields a more fine-grained decomposition. Here, regions

A, B, C, and D are split (instead of staying a larger region). Region B, for exam-

ple, corresponds to a separation of the digit “1”. The higher stress values in the

bottom part of this region indicate that the distances in t-SNE do not reflect the

high-dimensional distances very well. RMSE differs the most from the remaining

measures. Here, we see an additional split introduced by two new regions A and

B. This is caused by two peaks of high persistence at the top and bottom of the

Residual variance Stress MRRE
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8 5 9

3

2

Fig. 4 Errors in the PCA projection concentrate on a single region in the data. This is readily

seen in the plot of residual variance and Stress, for example, but not in MRRE. Here, larger errors

seem to be distributed uniformly. Upon decomposing the data, these peaks are shown to be of low

persistence. The best behaviour for modelling the MRRE is thus a single peak in the data.
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Residual variance
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Fig. 5 Large errors in the t-SNE projection occur uniformly in the regions corresponding to the

digits. This is indicated well by MREE, for example. RMSE, however, highlights regions with a

decidedly non-uniform error distribution.

marked region. The new regions correspond to the digit “2”. RMSE highlights that

t-SNE is distorting the distances for these points in favour of the (very good) global

separation in the embedding.

The contested regions are clearly highlighted in the similarity scatterplot (Fig. 5,

bottom), using MRRE as a reference measure. The orange and red regions are the

regions in which the other measures differ the most from MRRE: For the most part,

t-SNE is able to separate the data set very well, but local distances are somewhat

distorted. The distortions are very localized and concern only some digits, though.

When comparing the PCA and the t-SNE embedding, we can compare the resid-

ual variances, for example, to conclude that t-SNE commits smaller distance errors

on average, thereby offering a better global separation of the digits. Hence, t-SNE

might be preferable over a PCA embedding, despite the localized errors it intro-

duces.

5.3 Concrete compressive strength

The concrete compressive strength data from the UCI Machine Learning Reposi-

tory [1] contains 1030 mixtures of 8 different concrete compounds. The data are
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Neighbourhood loss

Rank correlation

MRRE RMSE

Residual variance

Stress

A

B

C

A
B

C

Neighbourhood loss MRRE RMSE Local costs

Fig. 6 Neighbourhood loss exhibits three maxima of high persistence, resulting in a decomposition

in three regions. MRRE yields a different decomposition in three regions. RMSE as a representative

of distance-based measures exhibits large errors in the upper region only. Using neighbourhood loss

as a reference measure, the local similarity scatterplot shows that the measures disagree mostly in

the upper region of the embedding.

known to exhibit linear structures [11, 13]. Previous research [13] indicates that

PCA is sufficient to provide an overview of the data. The relative distances (Fig. 6,

top) indicate that there are three groups of quality measures on the data. The

distance-based quality measures stress, RMSE, and residual variance all exhibit a

single large peak around the top of the data set. Since there are no maxima of high

persistence in the remaining part of the data set, it will not be decomposed fur-

ther, resulting in a single large region. MRRE and rank correlation, by contrast,

decompose the top part of the data further into two regions A and B because the

corresponding peaks are separated by lower values. Neighbourhood loss results in

a complementary decomposition, showing that the top part of the data is dominated

by a single peak of high persistence, while the bottom part decomposes into two

regions B and C.

The local similarity scatterplot indicates the agreement of quality measures with

respect to neighbourhood loss. We can see that the measures disagree on both the

upper regions, indicating that their error distributions are very different. This leads

us to question the quality of the embedding at these areas—which are rated very

differently by the rank-based measures, while the distance-based measures mostly

agree.

6 Conclusion

We introduced a method for comparing the behaviour of different quality mea-

sures for dimensionality reduction algorithms. Our method currently decomposes

scalar fields according to their maxima only. For future work, we plan on evaluating

whether the inclusion of minima would further increase the expressive power. We
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also want to evaluate the effects of different neighbourhood graph type approxima-

tions [7]. Furthermore, we want to investigate whether different measures for feature

relevance in scalar fields, such as topological saliency [9], might further improve the

results. Last, we want to look for alternatives to the Jaccard index for ascertaining

the similarity of decompositions.
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