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The popular R-convolution kernel framework is a powerful learning approach for structured
data. However, when assessing the similarity of two time series through their subsequences,
a simple but common instance of this framework can be meaningless. We utilize the power
of optimal transport theory to propose a meaningful indefinite kernel for time series analysis
that captures both local and global characteristics. We highlight the utility of our method by
comparing it to state-of-the-art time series classification methods on a wide variety of data sets.1

1 INTRODUCTION

Applications of optimal transport (OT) theory in machine learning have recently soared and benefit a large
variety of learning problems such as sorting [11], graph compression [18], or graph classification [33]. The
general applicability of OT is underlined by its use in different learning approaches such as deep learn-
ing [34] or kernel-based learning [6]. One popular approach of the latter for data of discrete nature is the
R-convolution kernel framework [20] which identifies similarities of objects by the means of the similarities
of their substructures. Substructures, or more precisely, subsequences, are the core concept of the majority
of state-of-the-art time series classification (TSC) algorithms.

Time series are ubiquitous in numerous domains, ranging from astrophysics [30] to biomedical applica-
tions [5], with time series classification remaining a highly active research topic. TSC methods make use
of extremely diverse methodologies, relying on the extraction of short, predictive subsequences [40], for
example, or on distance measures such as dynamic time warping (DTW). We approach this topic from a dif-
ferent point of view, taking inspiration from the field of kernel methods. While some attempts were made to
develop relevant kernel functions for TSC, successes in this area are limited. We hypothesise that this might
be due to the fact that kernel function construction for time series suffers from two fundamental pitfalls.
First, many similarity measures are either hypersensitive or insensitive to time shifts. Second, some time
series subsequence kernel functions, representing simple instances of the R-convolution framework [20],
can be meaningless, as we will show in Section 2.

1Please note that this is an extended and modified version of a paper accepted at the 19th IEEE International Conference on Data
Mining (ICDM).
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In this paper, we introduce the Wasserstein Time Series Kernel (WTK), a kernel for time series that
captures the similarity between subsequence distributions in addition to their pairwise similarities. WTK
relies on notions from OT, a field increasingly popular in the machine learning community that provides
similarity measures between probability distributions [28]. In the remainder of the paper, we describe the
following contributions in detail: 1. We show that a straightforward application of simple instances of R-
convolution kernels to time series data can be meaningless. 2. We develop the first subsequence-based
distance measure for time series that relies on the Wasserstein distance 3. We demonstrate its competitive
classification performance in comparison to state-of-the-art methods.

2 BACKGROUND

2.1 KERNEL THEORY

Let X be a set with n elements and k: X × X → R be a function that is symmetric and positive definite2,
i.e.
∑n

i,j=1 cicj k(xi, xj) ≥ 0 for every ci ∈ R and xi, xj ∈ X . Then there exists a Hilbert space H, i.e.
a complete inner product space, and a mapping ϕ : X → H such that k(·, ·) can be equivalently expressed
as k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H, where ⟨·, ·⟩H denotes the inner product in H. The space H is also referred
to as a Reproducing Kernel Hilbert Space (RKHS) because its inner product reproduces k. Since proving
that positive definiteness holds for a kernel function can be challenging [35], alternative approaches that are
not based on an RKHS were developed [27]. They are known as Reproducing Kernel Kreı̆n Spaces (RKKS).
In an RKKS, the positive definiteness requirement for the kernel function is dropped, so that kernels are
allowed to be indefinite. Previous research [19] also showed that support vector machine (SVM) classifiers
can use indefinite kernel matrices while maintaining favourable predictive performance.

2.2 MEANINGLESS SUBSEQUENCE KERNELS

However, kernel construction can suffer from certain pitfalls, particularly when using simple instances of
the R-convolution kernel framework [20], which evaluates a base kernel between all substructures and
aggregates them. Letting T, T ′ refer to two time series, S,S ′ to their respective sets of subsequences, and
kbase be a base kernel function, such a kernel takes the form of

k
(
T, T ′) := 1

|T | · |T ′|
∑
s∈S

∑
s′∈S′

kbase
(
s, s′

)
. (1)

Choosing kbase as a linear kernel will lead to

k
(
T, T ′) = 1

|T | · |T ′|
∑
s∈S

∑
s′∈S′

s⊤s′

≈ 1

|T | · |T ′|

(∑
s∈S

s⊤

)(∑
s′∈S′

s′

)
≈ T

⊤
T
′
,

(2)

where the last approximation follows from the fact that in the respective sums over all subsequence feature
vectors, almost all of the observations of length w, except for the leading w − 1 as well as the trailing
w − 1 observations, will appear at all dimensions of the vectors in the sum. Hence, for many values of w,
this R-convolution kernel degenerates to a simple comparison of the means of two time series T and T ′.
The consequence of Eq. 2 is that, in particular for z-normalised data sets, which are the suggested default
in time series analysis [29], the kernel becomes de facto meaningless. Our argumentation runs along the
lines of the famous result [21] about the inherent meaninglessness of clustering time series subsequences. In

2For reasons of notational simplicity, we will not make a distinction between ‘positive definite’ and ‘positive semi-definite’ in this
paper.
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practice, when looking at some data sets from the ‘UCR Time Series Classification Archive’ [7], we observe
that the values obtained from a R-convolution linear kernel are close to zero for short subsequence lengths.
As our experiments in Section 5 demonstrate, even increasing the subsequence length w does not result in
competitive predictive performance.

3 RELATED WORK

3.1 TIME SERIES CLASSIFICATION

There is a plethora of time series classification approaches, so we refer the reader to Bagnall et al. [2] for a
comprehensive overview of methods. The de facto standard database for the benchmarking of time series
classification algorithms is the ‘UCR Time Series Archive’ [7], a repository of 85 labelled time series data
sets that was recently increased to 128 time series [13]. In addition to the methods assessed by Bagnall et
al. [2], Wang et al. [38] established a baseline of neural network approaches, comprising a fully convolu-
tional network as well as a residual network architecture, among others.

3.2 KERNEL METHODS FOR TIME SERIES

In light of the definiteness property discussion in Section 2.1, we discuss some definite and indefinite kernels
for time series classification. The first kernel-based classification approaches comprise standard SVM ker-
nels (linear, RBF) between whole time series [32]. For periodic patterns, several cross-correlation kernels
are available [37]. Furthermore, some methods are based on DTW kernels [23] or general alignments of
time series [10, 8], the former being indefinite in general. This lack of definiteness prompted an investig-
ation into the impact of indefinite kernels on classification performance and lead to recursive edit distance
kernel for TSC [26].

Closest to our current method is KEMD [12], which uses the Earth Mover’s Distance [31] on histograms of
the time series data points and evaluates it for EEG classification. While this kernel also partially relies on
optimal transport, it fundamentally differs from ours, which uses subsequences rather than histograms (as
we specify in Section 4.2). Finally, Cuturi et al. [10, 8] define an alignment kernel via the polytope of all
possible alignments. Here, two subsequences are considered to be similar if they share a wide set of efficient
alignments.

4 OUR METHOD

4.1 OPTIMAL TRANSPORT

One of optimal transport’s commonly-used methods is the Wasserstein distance. Given probability distribu-
tions on some metric space, the Wasserstein distance defines a metric between them. More precisely, let σ
and µ be two probability distributions defined on a metric space M with some metric dist(·, ·), which we
refer to as the ground distance3.

Definition 1. Given p ∈ R>0, the pth Wasserstein distance is defined as

Wp(σ, µ) :=

(
inf

γ∈Γ(σ,µ)

∫
M×M

dist(x, y)pdγ(x, y)

) 1
p

, (3)

where Γ(σ, µ) is the set of all transportation plans γ ∈ Γ(σ, µ) over M×M with marginals σ and µ on
the first and second factors, respectively.

3This terminology is used on purpose to distinguish it from the metric induced by the Wasserstein distance.
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(a) Subsequence extraction (b) Transport plan (c) Transport plan visualisation

Figure 1: To measure the dissimilarity between two time series, our method proceeds in several steps. a First,
all subsequences of the two time series are extracted based on a sliding window approach (here,
not all subsequences are shown because their windows overlap). b After calculating the pairwise
distance matrix between all subsequences, the optimal transport plan is computed. Its visualisa-
tion makes correspondences more readily visible. Yellow indicates a large fraction of transported
mass (high subsequence similarity), whereas blue indicates a small fraction (low subsequence sim-
ilarity). c Each line indicates a match between two subsequences, with the line being anchored at
the respective beginning of the corresponding subsequences. The thickness of the line indicates
the transport value. For clarity, only the largest transport values are shown.

In practice, we use a modified definition that can be described in terms of a matrix optimisation prob-
lem (see Definition 2). The Wasserstein distance satisfies the axioms of a metric, as long as dist(·, ·) is a
metric (see the monograph of Villani [36], Chapter 6, for a proof). Throughout the paper, we will focus on
the 1st Wasserstein distance, i.e. p = 1, and refer to it as the Wasserstein distance, unless noted otherwise.

The Wasserstein distance is intricately related to optimal transport problems [36], where the general goal
is to find the most ‘inexpensive’ (in terms of predefined costs) way to transport the probability mass of one
probability distribution σ to another probability distribution µ. It is possible to reformulate the Wasserstein
distance as an optimisation problem between two matrices [31], making it more applicable to our setting.

Definition 2. Let X ∈ Rn×m and Y ∈ Rn′×m be two matrices. We consider X and Y to represent sets of
feature vectors of dimension m, but of varying cardinalities n and n′. The 1st Wasserstein distance between
X and Y is defined as

W1(X,Y ) := min
P∈Γ(X,Y )

⟨D,P ⟩F, (4)

where D is an n × n′ matrix containing the pairwise distances dist(x, y) for (x, y) ∈ X × Y , P is the
transport matrix, and ⟨·, ·⟩F is the Frobenius inner product.

The transport matrix P contains the fractions indicating how to transport the values from X to Y with
the lowest effort. If we assume that the total mass to be transported is 1 and is evenly distributed across
the elements of X and Y , then the values for the rows and columns of P must sum up to 1/n and 1/n′,
respectively.

4.2 A SUBSEQUENCE-BASED WASSERSTEIN KERNEL

We now define our novel subsequence-based Wasserstein kernel. Let w ∈ N>0 refer to a window width,
or, equivalently, a subsequence length. Given a set of n time series T := {T1, . . . , Tn} we denote their set
of length-w subsequences as S := {S1, . . . ,Sn}. For time series with a uniform length of m, the set Si

therefore contains m− w + 1 subsequences.

Definition 3 (Wasserstein time series kernel). Let Ti and Tj be two time series, and si1, . . . , siU as well as
sj1, . . . , sjV be their respective subsequences. Moreover, let D be a U×V matrix that contains the pairwise
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distances of all subsequences, such that Duv := dist(siu, sjv), where dist(·, ·) denotes the usual Euclidean
distance. Following Definition 2, we have to solve the optimisation problem

W1(Ti, Tj) := min
P∈Γ(Ti,Tj)

⟨D,P ⟩F, (5)

which yields the optimal transport cost to transform Ti into Tj by means of their subsequences. Then, given
λ ∈ R>0, we define

WTK(Ti, Tj) := exp(−λW1(Ti, Tj)), (6)

which we refer to as our Wasserstein-based subsequence kernel; we will discuss its theoretical properties in
Section 4.4.

Since we consider a time series Ti to be represented by its set of subsequences Si, we will also write

W1(Si,Sj) := W1(Ti, Tj) (7)

and

WTK(Si,Sj) := WTK(Ti, Tj) (8)

to simplify the notation. During the calculation of WTK, the expression in Eq. 5, i.e. W1(Ti, Tj), is a
metric. It would therefore also be possible to use it in a k-nearest neighbour (k-NN) classifier. While we
initially performed experiments to analyse this, we observed that k-NN classifiers yield substantially worse
performance than the kernel defined according to Eq. 6.

In fact, we consider our use of the Wasserstein distance to be more similar to that of an R-convolution
kernel. Our argument is motivated by the observation that we can see Eq. 5 as a decomposition of the
time series in terms of their subsequences. Furthermore, since W1(·, ·) is permutation-invariant, the order in
which these subsequences are detected does not matter, so that Eq. 6 leads to an R-convolution kernel with a
single decomposition. This explains our preference for the kernel-based approach, as well as the favourable
performance differences in a classification setting.

4.3 INTUITION

Similar to shapelet-based methods, WTK makes use of the descriptive power of the subsequences of a time
series. Figure 1 depicts the individual steps of our method, i.e. length-w subsequence extraction (Figure 1a)
followed by the calculation of the optimal transport plan (Figure 1b).

The transport plan P that results from solving the optimisation problem in Eq. 5 can be seen as a map that
assigns each length-w subsequence of the first time series (columns) to at least one length-w subsequence
of the other time series (rows). Figure 1c shows how the obtained transport plan values map on the example
time series. The formulation of the optimisation problem already accounts for different cardinalities in the
respective sets. Our method is therefore applicable to time series of varying lengths, as depicted in the
previous figure. In case the time series have the same length, this mapping is a bijection.

The obtained Wasserstein distance value is capable of better capturing the difference between the time
series in terms of subsequence distributions as compared to merely summing the values of the transport
plan. In the example, we can observe that the optimisation procedure selects the lowest distances between
subsequences and aligns the respective peaks of the time series correctly.

4.4 THEORETICAL PROPERTIES

Before using the similarity measure defined in Eq. 6 in a classical support vector machine, we have to prove
that it satisfies the properties of a kernel. More precisely, if we want to have a kernel that belongs to an
RKHS, we have to prove that it is positive definite. According to Feragen et al. [16, Theorem 5], this is
equivalent to stating that for any data set, the symmetric matrix D whose entry (i, j) is of the form Dij =
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W1(Ti, Tj) is (conditionally) negative definite, which implies that it has at most one positive eigenvalue [3,
Lemma 4.1.4, p. 163]. Feragen et al. [16, Theorem 4] showed that this implies that the metric space induced
by Eq. 5 can be isometrically embedded into a Hilbert space.

Our empirical results indicate that for a few data sets and some configurations, we observe more than
one positive eigenvalue in D; the kernel matrix K, whose entries are defined as Kij = WTK(Ti, Tj) :=
exp(−λW1(Ti, Tj)), is therefore not positive definite. This leads us to conjecture that properties of the time
series influence the induced metric, leaving us with several options:
(a) We can enforce the eigenvalue condition by calculating L := K·K⊤, where K refers to the n×n matrix

with entries according to Eq. 6. Letting y := K⊤x for x ∈ Rn, we then have x⊤KK⊤x = x⊤Ky =
y⊤y =

∑n
i=1 yi ≥ 0, so L is positive definite. This is also known as the empirical kernel. It is computa-

tionally the easiest, requiring only an additional matrix multiplication. However, it changes the values
between individual time series, and we observed in our experiments that the predictive performance
suffers when compared with other options.

(b) We can simplify the matrix by subtracting all negative eigenvalues, leading to L := K −
∑

i λiviv
⊤
i ,

where i ranges over the indices of the negative eigenvalues and vi denotes their corresponding unit
eigenvectors. By construction, this will set negative eigenvalues to zero, leaving us with a positive
definite matrix. This is computationally harder, requiring a full eigendecomposition.

(c) We can generalise the Wasserstein distance to a ‘softmin’ of all possible transportation plans, which
ensures that we obtain a positive definite kernel. However, it scales exponentially with the number of
subsequences and is infeasible for all practical purposes [39].

(d) We can sidestep the eigenvalue condition by using algorithms that are capable of handling these indefin-
ite matrices [27].

The majority of all data sets in our experiments resulted in a positive definite kernel matrix K, making the
options outlined above unnecessary. Nevertheless, to ensure classifier convergence, we employ a Kreı̆n
SVM [22] (following Option d), which is capable of handling positive definite and indefinite matrices. Un-
like the other options, this one does not have to modify the kernel values at testing time. Hence, we refer
to WTK as a kernel, with the added caveat that for some data sets, the kernel matrix is indefinite. We also
tried Options (a) and (b) but none of them exhibited a significantly better performance.

COMPARING TO KEMD As mentioned in Section 3, despite some shared theoretical background, our
method differs substantially from the Kernel Earth Mover’s Distance (KEMD) method proposed by Da-
liri [12]: while KEMD can be considered a histogram intersection kernel [24] that treats each time series as a
one-dimensional distribution of scalar values, our approach measures the distance between high-dimensional
distributions of subsequences. We argue that it is therefore better suited to capture long-distance similarities
of subsequences and time series.

4.5 EXTENSIONS

Our kernel easily permits changing the ground distance. Since previous work has shown that the choice of
distance is crucial for obtaining suitable predictive performance [25], this could potentially further improve
our experimental results. Another extension would be to calculate WTK(·, ·) with subsequences up to a
certain length w. While possible, this would require an innovative way to calculate distances between sub-
sequences of different lengths. The commonly-used sliding Euclidean distance, which is typically employed
for shapelet mining [40], is not a metric, as it does not satisfy the ‘identity of indiscernibles’.

4.6 COMPLEXITY

The complexity of our method comprises the following parts: (a) Subsequence extraction, (b) Subsequence
distance calculation, and (c) Wasserstein metric calculation. Letting n refer to the number of time series, we
have at most s := m − w + 1 subsequences per time series. The extraction process is therefore dominated
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by m, the length of the time series, leading to a total complexity of O(nm). This is a pre-processing step
that we share with other methods, such as shapelet extraction methods [40].

Then, the following operations are performed for each pair of time series. Computing the distances
between subsequences of two time series requires s2 distance calculations, each of which has to process a
sequence of length w. In the worst case, this calculation has a complexity of O

(
s2w

)
, although it is possible

to reduce this quite significantly, at least in the case of Euclidean distances, by re-using calculations.
Finally, evaluating Eq. 5 for two time series has a complexity of O

(
s3 log s

)
for an s× s input matrix [1].

Asymptotically, the runtime of all parts can be summarised as O
(
n2m3 logm

)
, because m is an upper

bound on the number of subsequences of a fixed length. This is a worst-case approximation and there are
ways to obtain near linear-time approximate solutions for the Wasserstein distance, such as the approaches
by Benamou et al. [4] or Cuturi [9], mostly involving Sinkhorn iterations [1]. In practice, for extremely
long time series with a large number of subsequences, the use of the Sinkhorn approximation or one of its
variants [1] could be beneficial. In our experimental setup, while a speed improvement could be observed,
the accuracies obtained via a straightforward Sinkhorn approximation were not competitive with the results
of the exact distance computation and hence were not included in our experiments.

5 EXPERIMENTS

We perform all experiments on 85 data sets from the ‘UCR Time Series Archive’ [13]. Each data set consists
of a predefined train/test split and the time series length differs across the data sets4. Our implementation
uses Python 3.7 and POT, the Python Optimal Transport library [17]. We make our code publicly
available5.

TRAINING AND EVALUATION We evaluate the classification accuracy on the test set and select the para-
meters on the training set via 5-fold cross validation using a Kreı̆n SVM classifier [22] with the following
parameter grid: γ = {10−5, 10−4, . . . , 103} (for the RBF kernel), λ = {10−4, 10−3, . . . , 10} (for WTK),
C = {10−3, 10−2, . . . , 103} (for the SVM classifier). We also vary the length w of the subsequences by
checking values of w as 10%, 30%, and 50% of the original time series length.

5.1 COMPARISON TO OTHER KERNELS

We compare our method with a standard linear and an RBF kernel based on subsequences in Figure 2. As
outlined in Section 2.2, we expect the linear kernel to perform badly. By contrast, the RBF kernel has
already shown favourable performance in previous research [32], but to our knowledge, we are the first to
include it in a large-scale comparison. We would expect this kernel to perform better because it is capable of
capturing non-linear patterns. However, the RBF kernel compares each pair of subsequences independently,
whereas WTK is able to capture similarities between the entire distributions of subsequences of two time
series.

We observe that our kernel outperforms the simple linear kernel in all cases, thereby giving a practical
demonstration of the theoretical issues outlined in the introduction: a straightforward application of simple
instances of the R-convolution framework for subsequences of time series is meaningless. As for the RBF
kernel, we outperform it on all but twelve data sets. The accuracy difference for the data sets in which the
RBF kernel is better is negligible, and the average difference in predictive performance is only ≈2.2%. This
demonstrates that the performance of our method is not caused by considering subsequences per se, but by
considering the distribution of subsequence similarities.

4Please refer to http://www.timeseriesclassification.com for additional details.
5Please find a snapshot of our repository under https://osf.io/dva3m/?view_only=
6e01c6eceb23414690ced45dc5daa776 We plan on providing a GitHub repository as well, and in the mean-
time, we provide an anonymised version for the review process, which provides example code for reproducing a subset of our
experiments.
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Figure 2: Comparison of the predictive accuracy of our method with the Linear and the RBF kernels for the
‘UCR Time Series Archive’ data sets.
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Figure 3: Critical difference plot, comparing our method (shown in bold) with several other methods. The
scale indicates the average rank of each method in terms of test accuracy for all data sets. The
classification performances of methods sharing horizontal bars are not significantly different. We
observe that there is no statistically significant difference between the performance of our method
and state-of-the-art ensemble methods.

5.2 COMPARISON TO THE STATE OF THE ART

Next, we compare our method with 40 state-of-the-art methods in time series classification. To this end, we
collected the accuracies of all published methods of the ‘UCR Time Series Classification Repository’ [7],
as well as two neural network baselines [38] with their classification performances from [15]. For each
data set, we picked the best-performing method on the published test set, referring to it as the respective
state-of-the-art method. In total, we therefore compare our method with the best of 40 other methods. Our
method outperforms all SOTA methods on six data sets. Overall, we exhibit at least equal accuracy as any
state-of-the-art method on twelve data sets and are on a par with all SOTA methods on six data sets.

STATISTICAL ANALYSIS To make the claims about the utility of our method more substantial, Figure 3
shows a critical difference plot [14] that depicts our method and several other methods. For a significance
level of α = 0.05, the plot shows that there is no statistically significant difference in the performance of
our method and these best-performing classifiers [2]. The best-performing classifiers are either deep neural
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networks or large ensembles and therefore heavily parametrised, hence showing a good promise for the
generalisation performance of our method.

6 CONCLUSION

We developed a novel subsequence-based kernel that uses the Wasserstein distance as an effective similarity
measure for time series classification. To prove the benefits of our method, we performed a large-scale
evaluation on the ‘UCR Time Series Archive’ data sets that showed that our method outperforms some
of the state-of-the-art time series classification algorithms while also displaying favourable generalisation
properties. Currently, our method only considers fixed-size subsequence lengths and we plan to include
varying-length subsequences in future work. However, there is a computational burden in their selection,
as well as additional constraints because no commonly-used metric for comparing subsequences of varying
lengths exists. Furthermore, we plan to explore how to extend our method to multivariate time series. Fi-
nally, effective subsequence preselection techniques will reduce the computational burden while potentially
increasing the predictive performance. In conclusion, this work demonstrates the merits of OT-based kernels
for time series analysis.
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