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We assume that we are calculating over the field of real numbers, denoted by R. In this case,
the singular value decomposition (SVD) of an m× n matrix M is defined as

M =UΣV ᵀ, (1)

where U is an m×m orthogonal matrix, Σ is a diagonal m×n matrix with non-negative real
numbers (the singular values) on the diagonal, and V ᵀ is the transpose of an n× n orthogonal
matrix. Note that the SVD of M always exists, regardless of the other properties of the matrix
M . In particular, this factorization is well-defined for ‘degenerate’ matrices with more columns
than rows. Its calculation has a complexity of O

�

mn2
�

.
If we want to calculate a principal component analysis (PCA) of M , we usually first calculate

the covariance matrix M ᵀM . This matrix is by construction symmetric and real-valued, so an
eigendecomposition is guaranteed to exist. Similarly, an SVD of this matrix exists, and we have

M ᵀM = (UΣV ᵀ)ᵀ (UΣV ᵀ) (2)
=VΣU ᵀUΣV ᵀ (3)

Since U is orthogonal, we have U ᵀU = I, i.e. the identity matrix, so the previous equation
can be simplified and we obtain

=VΣ2V ᵀ. (4)

This constitutes an eigendecomposition (by orthogonal matrices) of M ᵀM by definition. As
Σ2 is a diagonal n × n matrix, we can see that the eigenvalues of the PCA decomposition are
just the squares of the singular values of the singular value decomposition. Likewise, we can
see that the eigenvectors of the PCA decomposition are the singular vectors of the SVD. It is
thus possible to calculate a PCA using an SVD.

As the eigendecomposition has a complexity of O
�

n3
�

, the SVD is generally faster in prac-
tice. Moreover, it does not involve calculating the covariance matrix, which makes the SVD
numerically more stable.
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