
We represent an fMRI stack as a time‐varying volume (4D), which we ‘convert’
into a cubical complex. The fMRI activation function values become scalar values
at the vertices of the cubical complex, and we extend this function to a weight
function over the full cubical complex. The cubical complex enables us to
calculate multi‐scale topological features using persistent homology.

Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence

Abstract
Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining
insights into cognitive processes in humans. Data amassed from fMRI
measurements result in volumetric data sets that vary over time and are
challenging to analyse. We present a novel topological approach that encodes
each time point in an fMRI data set as a persistence diagram of topological
features, i.e. high‐dimensional voids present in the data. Here, we apply both
clustering and trajectory analysis techniques to a group of participants watching
the movie ‘Partly Cloudy’. We observe significant differences in both brain state
trajectories and overall topological activity between adults and children
watching the same movie.

Starting from a sequence of time‐varying persistence diagrams of one
participant, for each diagram slice, we evaluate a scalar‐valued statistic !: # →
ℝ, leading to a time series. In this example, we use two statistics, the infinity norm
# & and the p-norm # ' of a persistence diagram#:

• Measurements are inherently noisy
• A high degree of variability
• Relevant features occur at multiple scales

Topological summary statistics for age prediction

Our approach: Cubical Persistent Homology

Brain state trajectories
Next to the static analysis based on summary statistics, we can calculate
trajectories based on the time-varying topological dissimilarity between
participants. Letting Ψ refer to the persistence image calculation, we can

evaluate #)*,, for each time step -, in our dana set.

This turns the sequence of persistence diagrams of the .th participant into a
matrix /(*) ∈ ℝ3 ×56 , where 7 is the number of time steps and 8 is the
resolution of the persistence diagram, such that the 9th row corresponds to the
‘unravelled’ persistence image of time step -, . Our participants are stratified in
six age-related cohorts, ranging from young children to adults. For each of these
cohorts, we now calculate the sample mean /: of the matrices making up a
cohort. The resulting six matrices represent the average time-varying
topological activity of participants in each cohort. We can embed these matrices
into a 2D space using PHATE [1]. This results in a set of brain state trajectories (for
each of the brain masks).
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Challenges in fMRI data analysis

# & = max?,@∈ # A − C or  # ' =
D ∑?,@∈ # A − C '

Calculating any one of these norms for a 2D ‘slice’ of a 3D persistence diagram 
results in a single scalar value—one for each time step. By collating all summary 
values, we obtain a time series of the topological activity.

Using various masks for the volume, i.e. a whole‐brain mask (BM), an occipital–
temporal mask (OM), and the logical XOR of the two two (XM), we obtain three
different types of topological summary statistics time series. We can use the time
series to train a ridge regression model to predict the age of non‐adult
participants. Comparing this to existing methods and some baselines, we find
that the infinity norm is, due to its robustness, a suitable choice to obtain
high‐quality predictions—measured in terms of the correlation coefficient (CC)
and the mean squared error (MSE).
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