
Filtration Curves for Graph Representation
Leslie O’Bray

∗

ETH Zürich

SIB Swiss Institute of Bioinformatics

Switzerland

leslie.obray@bsse.ethz.ch

Bastian Rieck
∗

ETH Zürich

SIB Swiss Institute of Bioinformatics

Switzerland

bastian.rieck@bsse.ethz.ch

Karsten Borgwardt

ETH Zürich

SIB Swiss Institute of Bioinformatics

Switzerland

karsten.borgwardt@bsse.ethz.ch

ABSTRACT
The two predominant approaches to graph comparison in recent

years are based on (i) enumerating matching subgraphs or (ii) com-

paring neighborhoods of nodes. In this work, we complement these

two perspectives with a third way of representing graphs: using fil-
tration curves from topological data analysis that capture both edge

weight information and global graph structure. Filtration curves

are highly efficient to compute and lead to expressive represen-

tations of graphs, which we demonstrate on graph classification

benchmark datasets. Our work opens the door to a new form of

graph representation in data mining.

CCS CONCEPTS
•Mathematics of computing→Graph algorithms; •Comput-
ing methodologies →Machine learning approaches.

KEYWORDS
Graph classification; graph representation

ACM Reference Format:
Leslie O’Bray, Bastian Rieck, and Karsten Borgwardt. 2021. Filtration Curves

for Graph Representation. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’21), August 14–
18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3447548.3467442

1 INTRODUCTION
The search for ways to efficiently compare graphs is one of the clas-

sic tasks in data mining. This line of research is based on several

decades of work in chemoinformatics, which brought about ap-

proaches based on graph isomporphism testing [30, 31], graph edit

distances [7, 29], topological descriptors [5, 14], and later, frequent

subgraph mining [26]. Over the last two decades, however, two

alternative approaches have dominated this field: graph kernels

[4, 22] and graph neural networks [37]. While many different fla-

vors of both approaches exist, they are primarily based on (i) either

enumerating matching subgraphs in two graphs to determine sim-

ilarity or (ii) comparing (direct and higher-order) neighborhoods

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467442

of all pairs of nodes in two graphs. A limitation of the approaches

based on (i) is that enumeration approaches have difficulty including

edge weight information, which is important in many application

domains. A limitation of the approaches based on (ii) is that neigh-

borhoods capture little information about the global structure of a

graph, which also matters in many applications. Despite ongoing

research to overcome these issues, the literature lacks an efficient-

to-compute and powerful graph representation that can take edge

weights and global graph structure into account. In this paper, we

fill this gap by proposing a curve-based representation of a graph,

which we term filtration curves.
Filtration curves are inspired by filtrations, a well-known con-

cept from topological data analysis, where they typically occur in

the context of persistent homology [2, 11]. While persistent ho-

mology is a powerful framework that has proven to be expressive

and useful for graph classification, it imposes a larger inductive

bias on classifiers, thus impeding its use in arbitrary neural net-

work architectures. We assume a more generic view in this paper

and disentangle the concept of graph filtrations from persistent

homology, obtaining a more generic formulation in terms of graph
descriptor functions for graphs. This perspective results in a surpris-

ingly effective graph representation algorithm, which achieves the

best cross-dataset performance compared to the more complicated

state-of-the-art (SOTA) graph classification methods. Our approach

is easy to implement
1
and can be completely parameter-free, giving

rise to a new class of graph representation schemes.

2 RELATEDWORK
The field of graph classification has seen increasing importance over

the last two decades, resulting in a plethora of available methods.

Ranging from graph kernels [4, 22], a mathematically principled way

of addressing graph classification via (implicit) embeddings in Re-

producing Kernel Hilbert Spaces (RKHS), to graph neural networks
(GNNs) [18, 37], a family of neural networks based on message pass-

ing on graphs, numerousmethods have been proposed, and it is hard

to do proper justice to the richness of this field. Despite the large

number of methods available, there are few approaches that are ca-

pable of dealing explicitly with the multi-scale structure of weighted

graphs. While there have been many GNN methods in recent years,

we highlight the Graph Isomorphism Network (GIN) [38] specifi-

cally, since it provides a theoretical framework for understanding

the expressive power of GNNs and links that to the expressive

power of the famous Weisfeiler–Lehman relabeling scheme and

1
Our code and data are available at https://github.com/BorgwardtLab/Filtration_Curves.

https://doi.org/10.1145/3447548.3467442
https://doi.org/10.1145/3447548.3467442

10

80

80
90

90

20

20

50

50

50

10

80

80

20

20

50

50

50

10

20

20

50

50

50

10 10

20

20

Filtration Sequence

𝐺1

𝑤1 = 10

𝐺2

𝑤2 = 20

𝐺3

𝑤3 = 50

𝐺4

𝑤4 = 80

𝐺5 = 𝐺

𝑤5 = 90

10 20 30 40 50 60 70 80 90

1

2

3

4

5

Edge weight𝑤𝑖

N
o
d
e
l
a
b
e
l
c
o
u
n
t

10 20 30 40 50 60 70 80 90

1

2

3

4

5

Edge weight𝑤𝑖

N
o
d
e
l
a
b
e
l
c
o
u
n
t

Filtration Curves

Figure 1: Our approach uses edge weights to transform a graph into a filtration ordering, i.e., a nested sequence of subgraphs.
We evaluate a graph descriptor function 𝑓 alongside this filtration to obtain a set of filtration curves for graph representation
tasks. Here, we show the process of generating a filtration curve using the node label histogram descriptor function (FC-V)
for a graph with native edge weights and node labels. In this example, the count of each node label is tracked in each graph in
the filtration sequence, resulting in a filtration curve for each unique node label. The 𝑥-axis of the curve represents the edge
weight𝑤𝑖 , and the 𝑦-axis represents the count of the respective node label present in the subgraph𝐺𝑖 , which is induced by all
edges whose weight are less than or equal to𝑤𝑖 .

corresponding classification algorithm [30, 31]. The GIN is a useful

GNN comparison partner since their work also describes an opti-

mal configuration of GNNs for graph classification, and thus is a

state-of-the-art GNNmethod. However, our method achieves better

results than the GIN while being either parameter-free or having

at most one parameter, and is a non-neighborhood based approach.

Recently, methods from computational topology started to ex-

ploit the multi-scale nature of graphs, with several approaches

handling graphs through static topological descriptors [27, 40], or

via topology-based neural networks [8, 16, 17], all making use of

different kinds of filtrations, which we shall subsequently discuss.

An approach by Hofer et al. [17] is particularly relevant as it learns
a filtration end-to-end for graph classification. However, it requires

an additional GNN-based initialization and is currently restricted to

vertex-based and scalar-valued filtrations, displaying competitive

performance for the analysis of unlabeled graphs.

Our approach targets edge-based filtrations of graphs, and thus

can be used in both labeled and unlabeled graphs. Furthermore, we

are not restricted to the framework of persistent homology, nor

do we require the use of graph neural networks. Our method pro-

vides a new, more general formulation to the field. It thus naturally

complements filtration learning, and future work might focus on a

hybrid. Hence, while our approach borrows the concept of a filtra-

tion from computational topology, it replaces the use of topological

descriptors with more generalized graph descriptor functions such

as histogram functions, which we focus on in this paper.

While graph kernels, GNNs, and computational topology meth-

ods have seen good performance, they present some drawbacks.

Graph kernels can suffer from a computational complexity that is

quadratic in the size of the dataset, since kernels typically require

a pairwise comparison of each graph in the dataset (unless graph

kernels with explicit feature vectors are being employed). GNNs can

leverage faster computing resources found in a GPU, but still require

a large quantity of parameters to be tuned, and can have empirically

long runtimes when trained using only CPUs. Moreover, they are

known to suffer from oversmoothing [9]. Computational topology

methods often exhibit substantial complexity, both in terms of com-

putational aspects, but also in terms of assumptions about the data.

They are frequently presented without a clear picture of which
aspect of the complexity—e.g., the choice of topological features or

the selected representations—drives performance.

By contrast, our approach offers a fast, lightweight alternative

to existing methods, and we find it to perform comparably or even

better than the comparison partners, which comprise graph kernels,

GNNs, and topological methods.

3 METHODS
We refer to labeled graphs as those containing discrete node labels

in addition to continuous edge or node attributes, and unlabeled
graphs as those which do not contain any discrete or continu-

ous node or edge attributes. Given a graph 𝐺 = (𝑉 , 𝐸) with an

edge weight function w: 𝐸 → R, a filtration [11] is a series of

monotonically-growing subgraphs ∅ ⊆ 𝐺1 ⊆ 𝐺2 · · · ⊆ 𝐺𝑚 ⊆ 𝐺

that defines a decomposition, which can be understood as thresh-

olding a graph.Without loss of generality, we assume thatw(·) only
takes on a finite number of non-decreasing values𝑤1 ≤ · · · ≤ 𝑤𝑚 .

Then,𝐺𝑖 (the 𝑖
th

graph in the filtration) is the subgraph induced by

all edges whose weight is less than or equal to𝑤𝑖 , i.e.,𝐺𝑖 := (𝑉 ′, 𝐸 ′),
with 𝐸 ′ := {(𝑢, 𝑣) ∈ 𝐸 | w(𝑢, 𝑣) ≤ 𝑤𝑖 } and 𝑉 ′

:= {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈
𝐸 ′ or (𝑣,𝑢) ∈ 𝐸 ′}. Intuitively, a filtration observes the graph as

each edge is added one at a time, thus turning any graph into a

growth process. Using a fixed filtration, assuming that two graphs

are generated by a similar process, similar substructures will tend

to appear at similar “times.” If weights are available, creating a

filtration is computationally as efficient as sorting all edges. We will

also write F𝐺 as a shorthand for the sequence of graphs that occur

in a filtration of a graph 𝐺 .

3.1 Generating Filtration Curves
The generation of a filtration curve requires two core components:

choosing a weight function to define the filtration and a graph de-

scriptor function that will be used to build the curve alongside that

filtration. Equipped with these two things, the process decomposes

into a few steps. First, we convert the graph to a filtration of graphs

using the designated edge weight function. Second, we evaluate the

graph descriptor function on each subgraph in the filtration. Third,

we generate a curve for each graph using the values of the edge

weights in the filtration and the values from the graph descriptor

function. An example is presented in Figure 1.

In this section we will detail effective filtrations and descriptor

functions for two typical scenarios in graph classification: one for

labeled graphs and one for unlabeled graphs. We then show how

one can construct a filtration curve from such a process that can be

used for classification.

Creating such a curve is of interest for two key reasons. First,

it allows easy and straightforward standardization of graphs, en-

abling a graph to be vectorized, which enables their use with classic

machine learning algorithms. Second, the representation of a graph

as a curve has beneficial theoretical properties. Both of these will

be considered in more detail in Section 3.2.

3.1.1 Defining a Filtration. We defined a filtration at the start of the

section, but did not explicitly mention how one chooses the edge

weight function𝑤 that defines the filtration. In this section we will

introduce different various ways to define a filtration on a graph,

which provides the critical first step in generating a filtration curve.

We will detail the following weight functions that can be assigned

to edges in order to build a filtration: native edge weights, max

degree, Ricci curvature, and the heat kernel signature. We apply the

first to labeled graphs, since it is an inherent feature in the dataset,

and then discuss the latter three as ways to build a filtration when

there are no attributes present. Each weight function has its own

properties and expressive power, which we shall briefly discuss.

Native edge weights. For edge-weighted graphs, the edge weights
themselves provide a natural way to build a filtration. One can easily

extend this to graphs with continuous node attributes, but no edge

weight, by assigning an edge weight equal to the Euclidean distance

between the attributes of the two nodes.

Max degree. One of the simplest filtrations assigns an edgeweight

𝑤𝑖 𝑗 between nodes 𝑖 and 𝑗 using the degree function of the two

nodes incident to it:𝑤𝑖 𝑗 = max(degree(𝑖), degree(𝑗)). The degree
filtration is typically employed in computational topology to clas-

sify unlabeled graphs; it was seen to be particularly effective for the

analysis of social network datasets, and can be seen as a suitable

“first try” because degree calculations presuppose no additional in-

formation. At the same time, this filtration is limited in expressive

power because it can only incorporate information about degrees,

but no further information about vertex neighborhoods.

Ricci curvature. Following previous work [39, 40], one can en-

dow the edges of the graph with a weight by means of the Ricci

curvature [23]. Curvature is a characteristic invariant property aris-

ing from manifold geometry, which focuses on intrinsic properties

of a manifold and assesses to what extent points of the manifold

can be described by model geometries, such as surfaces. Graph

Ricci curvature is a graph isomorphism invariant that assesses how

much deviation there is from the “flat” case, i.e., a grid graph, by

assessing the similarity of the neighborhoods between two nodes.

To see the correspondence to the manifold case, we note that a tree,

i.e., an acyclic graph, where two nodes have no overlapping neigh-

bors, has negative curvature, whereas a complete graph, where all

nodes are connected to all others, has positive curvature. There are
multiple ways of defining curvature; we follow the definition by

Ollivier–Ricci. Formally, we turn the graph into a metric space with

distance 𝑑 . There are several ways of defining such a distance, but

when working with unlabeled graphs, the shortest path distance is

a common choice. For a fixed base node 𝑥 ∈ 𝑉 , we then calculate a

probability measure𝑚𝛼
𝑥 via

𝑚𝛼
𝑥 (𝑣) =

𝛼 𝑣 = 𝑥

1−𝛼
degree(𝑥) 𝑣 ∈ N (𝑥)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(1)

where N(𝑥) denotes the set of neighbors of 𝑥 . Intuitively, the 𝛼
parameter controls how much mass a given node keeps for itself

as opposed to distributing it to its neighbors. We then obtain the

Olivier–Ricci curvature of an edge between two nodes 𝑥 and 𝑦 via

the Wasserstein distance𝑊 (·, ·) between their respective probabil-

ity measures:

𝜅𝛼 (𝑥,𝑦) = 1 −
𝑊

(
𝑚𝛼
𝑥 ,𝑚

𝛼
𝑦

)
𝑑 (𝑥,𝑦) (2)

The Wasserstein distance is a well-known concept from Optimal

Transport theory, often also known as the Earth Mover’s Distance.

It affords efficient implementations, which can be approximated

in linear time [1, 24], making Ricci curvature calculations highly

scalable. In this paper, we set 𝛼 = 0.5, as this distributes probability

mass equally over a vertex and its neighbors.

Heat kernel signature. Another option is the heat kernel signa-

ture, which is derived from the heat diffusion equation on graphs.

Following the notation of Carrière et al. [8], the heat kernel signa-

ture can be calculated for a node 𝑣 of a graph 𝐺 via

hks(𝐺, 𝑡, 𝑣) =
𝑛∑
𝑖=1

exp(−𝑡𝜆𝑖)𝜓𝑖 (𝑣)2, (3)

where 𝑡 ∈ R is the diffusion parameter, 𝜆𝑖 and 𝜓𝑖 (𝑣) are the 𝑖th
eigenvalues and eigenfunctions of the graph Laplacian. The graph

Laplacian, defined using the (weighted) adjacency matrix, is known

to carry a substantial amount of shape information of graphs [15,

35]. The heat kernel signature therefore characterizes the structural

role of vertices, making it a highly expressive summary to calculate.

It requires a full eigendecomposition of a matrix, however, which

could lead to scalability issues. Following the previous equation,

we provide edge weights again as the maximum of the values that

were computed on the nodes incident to it.

0 1 2 3 4
−25

−20

−15

−10

−5

0

Edge weight

C
ou

nt
of

co
nn

ec
te

d
co

m
po

ne
nt

s

0 1 2 3 4
−25

−20

−15

−10

−5

0

Edge weight

C
ou

nt
of

co
nn

ec
te

d
co

m
po

ne
nt

s

(a) MUTAG

0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

Edge weight

C
ou

nt
of

co
nn

ec
te

d
co

m
po

ne
nt

s

0 5 10 15 20 25 30
−50

−40

−30

−20

−10

0

Edge weight

C
ou

nt
of

co
nn

ec
te

d
co

m
po

ne
nt

s

(b) IMDB-BINARY

Figure 2: Filtration curves form a vector space, meaning that addition and scalar multiplication are well defined. It is therefore
possible to create a mean filtration curve of a dataset. Here we stack all the filtration curves of the graphs in the MUTAG and
IMDB-BINARY datasets, where blue is one class, and purple is the other. The mean filtration curve of each class is identified
by the thick, darker line. The difference between the two classes are visible in the mean filtration curve.

3.1.2 Choosing aGraphDescriptor Function. Once the edgeweights
have been defined on a graph, we can induce a filtration. The re-

maining step is to define a graph descriptor function that will be

evaluated alongside the filtration, and from which we will generate

the filtration curve itself.

Specifically, we require a function 𝑓 : 𝐺 → R𝑑
that evaluates

certain attributes of a graph and embeds them into a 𝑑-dimensional

real-valued space. We refer to this as a graph descriptor function.
Given 𝑓 and a filtration F𝐺 , we can evaluate 𝑓 for each subgraph

𝐺𝑖 of the filtration and represent 𝐺 as a high-dimensional path via

P𝐺 :=

𝑚⊕
𝑖=1

𝑓 (𝐺𝑖) ∈ R𝑚×𝑑 , (4)

where𝑚 indexes the number of thresholds (we will use this term

interchangeably with edges or edge weights) in the filtration F𝐺 ,
and ⊕ refers to the concatenation operator. The resulting path can

equivalently be seen as an𝑚 × 𝑑 matrix whose rows correspond
to filtration steps (which we will also refer to as thresholds) and

whose columns correspond to features. The high-dimensional path

P𝐺 describes the evolution of a certain descriptor during the graph

growth process; it can also be considered as a functional summary

of 𝐺 [3], from which we can obtain a curve.

These curves result in a sparse representation of a graph, as the

filtration curve only changes at the values of the edge weights, i.e.,

the thresholds, and therefore only requires at most 𝑚 points to

fully describe the curve, which is already a sufficient representa-

tion for comparison. However, it is also easy to extend Eq. 4 to a

standardized representation of all graphs in a dataset, which can

be beneficial in certain scenarios. One can achieve this by creat-

ing a shared sorted index of all unique thresholds that exist in the

dataset. While an individual graph will initially only have values

of the graph descriptor function at the thresholds that exist in that

graph itself, we can fill in the remaining values between the graph’s

thresholds with the previous value, due to the fact that the thresh-

olds are ordered (i.e., forward filling). Thus, the value of the graph
descriptor function of a single graph will not change until the next

threshold from the graph in question is reached. While not strictly

necessary to perform graph comparison, the ability to standardize

the size of the graph representation unlocks a wealth of methods to

the practitioner. We will subsequently discuss two possible choices

of a graph descriptor function, one for labeled graphs and one for

unlabeled graphs, which we use in this paper.

Node label histogram. A simple choice for 𝑓 in labeled graphs

is a node label histogram function, depicted in Figure 1. At each

step of the filtration, one tracks the number of each node label that

is present in the graph, resulting in a multi-scale descriptor of the

graph, which is more descriptive than merely calculating a single
histogram of the node labels at the end of a filtration. As seen in

Figure 1, the high-dimensional path from Eq. 4 can be represented

as 𝑑 scalar-valued curves, resulting in one curve per unique node

label over the set of all values in the filtration.

Count of connected components. When working with unlabeled

graphs, we cannot use the node label histogram as before. Instead,

we consider the points, i.e., thresholds, in the filtration at which a

connected component is either created or destroyed in the graph,

and use the count of such connected components as our descriptor.

We define a connected component as being created when the fil-

tration value is equal to its node degree, and the destruction point

as being equal to the edge weight in which the component was

merged with another connected component. As one moves along

the filtration, the number of connected components increases at a

node’s creation point, as an isolated node constitutes a connected

component, and decreases at its destruction point, since the node

is now connected to another connected component. This particular

representation then only requires tracking the thresholds at which

there is a creation or destruction point, since at the other values

the number of connected components does not change, leading to

a further sparsified representation.

3.1.3 Connection to Persistent Homology. There is a relationship
between the filtration curve and established concepts from topolog-

ical data analysis, namely persistent homology and the Betti curve,

also known as the Persistence Indicator Function [28, 36]. Indeed,

one may see the Betti curve as a specific instance of our approach

when analyzed with the proper descriptor. For example, the persis-

tence diagram is represented by a set of tuples (𝑐, 𝑑) marking the

creation and destruction point of a given connected component.

Node weights are commonly set to zero, meaning that at threshold

zero, each node is created and forms its own unique connected

component. In such a scenario, the list of tuples all take the form

(0, 𝑑) and thus connected components are only ever destroyed.

While the Betti curve from persistent homology is also of interest,

we find our more general formulation compelling for a few reasons.

First, it allows us to measure various topological information with

a given filtration, and therefore is more general than the persis-

tence diagram and does not inherit any implicit biases. Second, the

persistence diagram is not easily vectorized, i.e., converted into a

feature vector for downstream analysis tasks. It therefore requires

additional steps and decisions for converting the information from

the diagram to a useful vector representation. Third, we find better

performance in our generalized version: the general formulation

yields better results than using the standard formulation of the

Betti curve from persistent homology, since it effectively serves as

a type of weighting factor for our curve. We will now discuss some

of the beneficial properties of filtration curves in more detail.

3.2 Properties of Filtration Curves
While the embedding as defined via Equation 4 makes the path

amenable to a sophisticated analysis in terms of high-dimensional

path signatures [10], we want to focus on the properties of filtration

curves if considered as scalar-valued functions. Hence, we consider

a function 𝑓 : 𝐺 → R𝑑
to decompose into a set of scalar-valued

functions 𝑓𝑖 : 𝐺 → R, with 𝑖 ∈ {1, . . . , 𝑑}. In this formulation, we

lose the possibility to discover interactions in the image of 𝑓 , but

we gain a much more simplified perspective that we can exploit

to obtain an efficient similarity measure. Each 𝑓𝑖 s by construc-

tion a piecewise linear function (and can be decomposed into step

functions), whose value changes only at finite values, namely the

filtration weights. These functions form a vector space, i.e., their

addition and scalar multiplication is well-defined. It is therefore

possible to create a mean filtration curve, for instance, enabling

visual comparison of the larger differences of the filtration curves

by class. Figure 2 provides an illustration of such an analysis, and

highlights how the filtration curves between different classes in

a dataset can be visibly distinguished from one other. Since step

functions also satisfy integrability, we obtain a norm as

∥ 𝑓𝑖 ∥𝑝 :=

(∫
R
|𝑓𝑖 (𝑥) | d𝑥

) 1

𝑝

, (5)

i.e., the standard norm of an 𝐿𝑝 space. Moreover, we obtain a sim-

ilarity function that can be evaluated efficiently for two curves 𝑓

and 𝑔, by calculating

⟨𝑓 , 𝑔⟩ =
∫
R
𝑓 (𝑥)𝑔(𝑥) d𝑥 . (6)

Since each function is supported on a compact set of at most 𝑚

thresholds (and zero everywhere else), Equation 5 and Equation 6

boil down to calculating integrals of step functions. While Equa-

tion 6 can be implemented efficiently (in particular, both curves can

be represented in a sparse fashion), our initial experiments yielded

better results when vectorizing the curves. The vectorized represen-

tation enables us to use a random forest classifier, as opposed to

evaluating the similarity using a kernel method, such as an SVM,

which is an option for future work.

Complexity. The complexity of computing a filtration curve largely

hinges on the complexity of the graph descriptor function. If we

assume constant complexity for a graph descriptor function (which

applies to a label histogram, for instance), the complexity of calcu-

lating a filtration curve is dominated by the complexity of sorting

Table 1: Summary statistics of the datasets.

Dataset #Graphs Avg. |𝑉 | Avg. |𝐸 | # Classes Class Ratio

BZR_MD 306 21.30 225.06 2 0.51/0.49

COX2_MD 303 26.28 335.12 2 0.51/.049

DHFR_MD 393 23.87 283.02 2 0.68/0.32

ER_MD 446 21.33 234.85 2 0.59/0.41

BZR 405 35.75 38.35 2 0.79/.021

COX2 467 41.22 43.45 2 0.78/0.22

DHFR 756 42.23 44.54 2 0.61/0.39

PROTEINS 1113 39.06 72.82 2 0.60/0.40

IMDB-BINARY 1000 19.77 96.53 2 0.50/0.50

IMDB-MULTI 1500 13.00 65.94 3 balanced

REDDIT-BINARY 2000 429.63 497.75 2 0.50/0.50

REDDIT-5K 4999 508.52 594.87 5 balanced

MUTAG 188 17.93 19.79 2 0.66/0.34

all filtration thresholds in a graph, i.e., O(𝑚 log𝑚), with𝑚 denoting

the number of edges in the graph.

Limitations. The main limitation of our approach lies in the

choice of filtration for the graph. While we describe two filtrations

for labeled and unlabeled graphs, it would also be possible to learn

the filtration directly. Previous work [17] demonstrated this by

using graph descriptors from computational topology. In the future,

we aim to extend this approach to learn filtrations that are tailored

to be useful for generalized graph descriptors.

4 EXPERIMENTS
Having introduced the details of our method, we now aim to evalu-

ate its classification performance, runtime, and potential for even

better scalability. We will address the following questions.

(1) Do filtrations curves perform well compared to SOTA alter-

natives?

(2) Is our runtime competitive with other fast SOTA methods,

such as the Weisfeiler–Lehman relabeling scheme?

(3) Can we achieve similar results by reducing our representa-

tion, thereby “coarsening” the curve?

4.1 Datasets
For labeled graphs, we primarily consider benchmark datasets that

have native edge weights: BZR_MD, COX2_MD, DHFR_MD, and

ER_MD [20, 33]. These are datasets containing molecules, where

the nodes represent atoms, and the edge weights correspond to the

distance between the atoms, generated from the 3D coordinates of

the atoms. Thus, these datasets are fully-connected graphs. Since

there are few datasets available with edge weights, we show how

to extend our approach to labeled graphs without edge weights

by defining a weight function. For this, we use the datasets BZR,

COX2, DHFR, and PROTEINS [6, 33], since they all have continuous

node attributes. Following recent work which showed that this was

beneficial [34], we use the Euclidean distance between the node

attributes to define the edgeweight on existing edges. The first three

are again molecules, whereas PROTEINS is a dataset of proteins.

For unlabeled and unweighted graphs, we consider the social

network datasets IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY

and REDDIT-MULTI-5K. Additionally, we treat MUTAG, another

molecule dataset, as if it were an unlabeled dataset, removing all

Table 2: Classification accuracies on labeled datasets using the node label histogram filtration curve (FC-V) vs. state-of-the-art
graph kernels and GNNs, and 𝐿2 distance of each method to the winning method on each dataset. We report the average of 10
runs of 10-fold CV, with the best result in bold. OOT means the kernel matrix did not finish computing within 120 hours.

Native Edge Weights

Method BZR_MD COX2_MD DHFR_MD ER_MD

CSM 77.63 ± 1.29 OOT OOT OOT

HGK-SP 60.08 ± 0.88 59.92 ± 0.66 67.95 ± 0.00 59.42 ± 0.00

HGK-WL 52.64 ± 1.20 57.15 ± 1.20 66.08 ± 1.02 66.72 ± 1.28

MLG 51.46 ± 0.61 51.15 ± 0.00 67.95 ± 0.00 60.72 ± 0.69

WL 67.45 ± 1.40 60.07 ± 2.22 62.56 ± 1.51 70.35 ± 1.01

WL-OA 68.19 ± 1.09 62.37 ± 2.11 64.10 ± 1.70 70.96 ± 0.75

GNN 69.87 ± 1.29 66.05 ± 3.16 73.11 ± 1.59 75.38 ± 1.60

FC-V 75.61 ± 1.13 73.41 ± 0.79 76.78 ± 0.69 82.51 ± 1.04

Non-Native Edge Weights

BZR COX2 DHFR PROTEINS

84.54 ± 0.65 79.78 ± 1.04 77.99 ± 0.96 OOT

81.99 ± 0.30 78.16 ± 0.00 72.48 ± 0.65 74.53 ± 0.35

81.42 ± 0.60 78.16 ± 0.00 75.35 ± 0.66 74.53 ± 0.35

88.04 ± 0.70 76.76 ± 0.87 83.22 ± 0.94 75.55 ± 0.71
86.16 ± 0.97 79.67 ± 1.32 81.72 ± 0.80 73.06 ± 0.47

87.43 ± 0.81 81.08 ± 0.89 82.40 ± 0.97 73.50 ± 0.87

79.34 ± 2.43 76.53 ± 1.82 74.56 ± 1.44 70.31 ± 1.93

85.61 ± 0.59 81.01 ± 0.88 81.43 ± 0.48 74.54 ± 0.48

𝐿2

0.38

0.36

0.37

0.42

0.25

0.23

0.19

0.04

node and edge information. Table 1 contains detailed summary

statistics about the datasets.

4.2 Experimental Setup
We vectorize our curves and use a random forest for classification.

For labeled datasets, we use the node label histogram curve (FC-V),

and for the unlabeled datasets we use the Ricci (FC-Ricci, 𝛼 = 0.5),

max degree (FC-Max Degree) and heat kernel signature (FC-HKS)

filtration curves. We compare ourselves to the SOTA graph kernels

(GKs), GNNs and topological methods. We include a selection of the

SOTA and empirically strongest GKs for labeled graphs; our com-

parison partners are therefore comprised of the Subgraph Match-

ing Kernel (CSM, 𝑘 ∈ {3, 4, 5}, 𝑐 ∈ {0.1, 0.5, 1.0}) [20], Shortest
Path Hash Graph Kernel (HGK-SP) [25], Weisfeiler–Lehman Hash

Graph Kernel (HGK-WL, ℎ ∈ {0, . . . , 7}) [25], Multiscale Laplacian

Graph Kernel (MLG, 𝜂,𝛾 ∈ {0.01, 0.1}, 𝑟 , 𝑙 ∈ {2, 3}) [19], Weisfeiler–

Lehman (WL, ℎ ∈ {0, . . . , 7}) [30, 31], and Weisfeiler-Lehman Opti-

mal Assignment (WL-OA, ℎ ∈ {0, . . . , 7}) [21] graph kernels. The

𝐶 parameter of the SVM was tuned from {10−4, . . . , 103}.
For our GNN comparison, we use a message passing neural

network that can incorporate edge attributes on the datasets with

native edge weights [13, 32], and to a GIN-𝜖 [38] on all others, which

recently demonstrated its superior performance to the main deep

learning approaches on graphs today, and thus can be considered

the toughest method to beat. When node labels are not present, the

nodes are given a one-hot label defined by the node degree. We used

a 5-layer network and optimized over the hyperparameters used by

the authors [38]: the number of epochs ∈ {1, . . . , 350}, hidden units

equal to 64, batch size ∈ {32, 128}, and dropout ∈ {0, 0.5}.

Finally, we also compared to two leading topological methods,

PersLay [8] and Graph Filtration Learning (GFL) [17] on the un-

labeled datasets, where these methods have shown good results.

The results are those listed in the original paper, and thus are not

compared on the same splits of the data as ours (thus listed in gray).

Additionally, GFL reports results on a single run of 10-fold cross

validation, whereas the rest of the results report on the average of

10 runs of 10-fold cross validation.

We perform a 10 times repeated 10-fold cross validation with

a 5-fold inner cross validation to tune all hyperparameters. This

means that all parameter tuning was performed on the training

data only, which ensures an unbiased estimate of the generalization

accuracy. Methods were allocated 128 GB of RAM and 120 hours

for training. All experiments and comparison partners that ran use

the same splits of the data; results reported from original authors

are marked in gray in Tables 2 and 3.

4.2.1 The Importance of a Proper Training. Wewould like to briefly

highlight two important but underdiscussed aspects of running a

proper training procedure for graph classification. Proper training

mandates using a double cross validation scheme when the method

requires that one chooses hyperparameters and best practices dic-

tate running repeated 10-fold cross validation. While the training

setup described above is commonplace in most graph kernel liter-

ature, it is less consistent in some of the more recent approaches,

and can have a non-trivial effect on the results.

Cross validation can be used for model selection or for model
assessment, but when it is used for both, it is necessary to have a

double cross validation scheme (i.e., with both an inner and outer

cross validation) in order to have an accurate assessment of the

model performance. Several recent approaches, in particular neural

network based approaches, tend to do a single cross validation for

model selection, and then use that for model assessment as well.

Practically speaking, this means that one uses the same split of

the data to simultaneously chose the parameters of the model and

estimate the model’s generalization performance, leading to an

overly optimistic estimate of the generalization accuracy. This issue

is described thoroughly in Errica et al. [12].

The second point is that the best practice is to repeat 10-fold cross

validation (the standard is 10 times), to reduce the effect of having

a lucky split—a lottery ticket—of the data. Since the benchmark

datasets in graph classification are often quite small, the variability

can be quite large: for example, previous work of ours had results as

high as 80% on IMDB-BINARYwhen considering just a single run of

10-fold cross validation. However, the results were not reflective of

performance when repeated 10 times, which reduced the results to

around 73%. It is possible to see this effect in the standard deviations,

Table 3: Classification accuracies on the unlabeled datasets using the Ricci (FC-Ricci), max degree (FC-Max Degree), and heat
kernel signature (FC-HKS) filtration curves vs. SOTA competitor methods, and the 𝐿2 distance of each method to the best
performing method. Gray results signify results from the original paper. The best result among methods that were trained on
the same splits is in bold. GFL results are reported on a single run of 10-fold CV; all other methods report the average of 10
runs of 10-fold CV. OOMmeans “out of memory” (from an allocation of 128 GB RAM), and OOT means it did not compute in
120 hours. Our method ignores the node labels of MUTAG; the comparison methods use them.

Method IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI MUTAG

CSM OOT OOT OOT OOT 87.29 ± 1.25

HGK-SP 73.34 ± 0.47 51.58 ± 0.42 OOM OOM 80.90 ± 0.48

HGK-WL 72.75 ± 1.02 50.73 ± 0.63 OOM OOM 75.51 ± 1.34

MLG 52.56 ± 0.42 34.27 ± 0.33 OOM OOM 78.53 ± 2.25

WL 71.15 ± 0.47 50.25 ± 0.72 77.95 ± 0.60 51.63 ± 0.37 85.75 ± 1.96

WL-OA 74.01 ± 0.66 49.95 ± 0.46 87.60 ± 0.33 OOM 86.10 ± 1.95

GNN 66.53 ± 2.33 48.93 ± 0.88 89.9 ± 1.9 56.1 ± 1.6 80.42 ± 2.07

PersLay 71.2 48.8 n/a 55.6 89.8

GFL 74.5 ± 4.6 49.7 ± 2.9 90.2 ± 2.8 55.7 ± 2.9 n/a

FC-Ricci 73.01 ± 0.65 46.13 ± 0.35 89.41 ± 0.24 52.36 ± 0.37 87.31 ± 0.66
FC-Max Degree 67.55 ± 0.53 43.45 ± 0.36 85.97 ± 0.15 45.91 ± 0.22 73.79 ± 1.00

FC-HKS 73.84 ± 0.36 46.80 ± 0.37 86.78 ± 0.25 52.15 ± 2.18 84.93 ± 0.90

𝐿2

0.62

0.54

0.55

0.61

0.13

0.36

0.11

–

–

0.07
0.20

0.07

C
S
M

H
G
K
-S
P

H
G
K
-W

L

M
L
G

W
L

W
L
-O
A

G
N
N F

C

0.00

0.05

0.10

0.15

0.20

0.25

Method

A
b
s
.
d
i
s
t
a
n
c
e
t
o
a
c
c
u
r
a
c
y
o
f
b
e
s
t
m
e
t
h
o
d

(a) Labeled graphs

C
S
M

H
G
K
-S
P

H
G
K
-W

L

M
L
G

W
L

W
L
-O
A

G
N
N F

C

0.00

0.10

0.20

0.30

0.40

Method

A
b
s
.
d
i
s
t
a
n
c
e
t
o
a
c
c
u
r
a
c
y
o
f
b
e
s
t
m
e
t
h
o
d

(b) Unlabeled graphs

Figure 3: Boxplot depicting the absolute differences of each
method to the best performing method on each dataset;
lower values are better. For labeled graphs, FC is FC-V (up-
per graph); for unlabeled it is FC-Ricci (lower graph).

which are particularly high when methods report on a single run.

Figure 1 in Errica et al. [12] provides a useful depiction of the

magnitude of this effect on different datasets.

We highlight these two points to address any surprise that the

reader may have in seeing that the GNN results are lower than

what the original authors report or what they may have expected,

sometimes by several percentage points. This is explained by the

fact that we perform the proper inner cross validation to select the

parameters (model selection), and use an outer cross validation to

report the generalization accuracy (model assessment), and further-

more we repeat our 10-fold cross validation 10 times. Our results

are consistent with those found by Errica et al. [12], and represent

a more accurate generalization accuracy of the approaches.

4.3 Classification Performance
To address question (1) of whether filtration curves perform well

compared to state-of-the-art alternatives, we provide a comparison

of the results of our approach and competing methods on labeled

(Table 2) and unlabeled (Table 3) datasets. The filtration curve shows

consistently strong performance: it beats all comparisonmethods on

several datasets and is competitive with the best method when it is

not first. To assess the general performance of different methods, we

report the𝐿2 distance of eachmethod to thewinningmethod of each

dataset. OOT/OOM values are replaced with the value of a classifier

that predicts the majority class. This allows us to assess whether a

method is consistently strong, or is merely able to outperform other

methods on specific datasets since the 𝐿2 distance rewards methods

that are close to the winning method on all datasets, and penalizes

strong deviations from the best method on single datasets. Here we

see that our method shines, having the lowest 𝐿2 distance on both

labeled and unlabeled graphs. Figure 3 shows this from another lens;

it is a boxplot of the absolute distances of each method to the best

performing methods (lower is better). Having a large range in the

100 200 400 600 800 1000

0

2

4

6

8

10

12

Number of graphs 𝑔

C
P
U
r
u
n
t
i
m
e
(
s
e
c
o
n
d
s
)

100 200 400 600 800 1000

0

2

4

6

8

Number of nodes 𝑛

C
P
U
r
u
n
t
i
m
e
(
s
e
c
o
n
d
s
)

250 500 1000 1500 2000

0

2

4

6

Number of edges𝑚

C
P
U
r
u
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Weisfeiler–Lehman

Filtration Curves

Figure 4: A comparison of CPU runtimes of building a filtration curve (here, FC-Max Degree) versus the Weisfeiler–Lehman
relabeling scheme, on synthetic graphs. In each plot, only one variable is varied (𝑔 ∈ {100, 200, . . . , 1000}, 𝑛 ∈ {100, 200, . . . , 1000}
and𝑚 ∈ {250, 500, . . . , 2000}); the default values are 𝑔 = 100, 𝑛 = 100, and𝑚 = 250 (shown as diamonds on the 𝑥-axis).

boxplot indicates that a method performs badly on some datasets;

in contrast, the filtration curves have a very small range, showing

its consistent performance. This is particularly notable given how

much simpler our approach is relative to the other methods: FC-V

has no parameters; FC-Ricci has one.

4.4 Runtime Analysis
Having confirmed the first question by finding that our method has

the lowest 𝐿2 distance of all methods considered, we investigated

question (2): the runtime of our method compared to other methods.

Section 3.2 described an attractive theoretical complexity, so we

wanted to assess the empirical performance relative to other meth-

ods that can generate a feature vector representation of a graph. To

do so, we compared ourselves with the Weisfeiler–Lehman (WL)

relabeling scheme, which can also be used to generate a vector rep-

resentation of a graph, and is the basis for the Weisfeiler-Lehman

GK [30, 31]. We generated synthetic graphs with edge weights and

compared the runtimes of generating a vector from a filtration

curve vs. using the WL relabeling scheme across different numbers

of graphs, nodes and edges in the dataset. In each experiment, we

varied one parameter of the graph, with the default values for the

number of graphs 𝑔 = 100, the number of nodes 𝑛 = 100, and the

number of edges in each graph𝑚 = 250. Figure 4 shows the results

of building a filtration curve using the max degree; our runtime

is favorable even compared to already fast methods, such as WL,

underscoring one of the key advantages of our approach.

4.5 Coarsening the Curve
Finally, while we found good results using the full curve, question

(3) aimed to understand whether we can achieve comparable perfor-

mance while “coarsening” the curve, to further improve the speed

and space requirements of our method. As mentioned in Section 3.2,

the complexity of building the filtration curve is O(𝑚 log𝑚), where
𝑚 is the number of edges in a graph, and we saw a fast empirical run

time. Indeed, building the curve is done in a matter of seconds to

minutes across all datasets, and we see a strong correlation between

the average number of edges in a dataset and how long it takes.

Once each graph is represented as a vector, the remaining runtime

is that of the classifier, which is largely determined by the size of

the vector representation and the size of the dataset.

In order to further speed up the classification step, we coarsened

the curve by not considering all edges, but rather a summary of the

curve. This amounts to shrinking the vector representation; in this

case, we chose to represent each dataset as a vector in R𝑑
, with

𝑑 ∈ {5, 10, 25, 50, 100}, to assess how much information is already

captured with such a compressed representation. Figure 5 shows

the results from testing the compressed representations on the

labeled datasets and FC-V. Surprisingly, a 100-dimensional vector

already captures most of the classification performance of the full

representation, showing the potential for massive computational

and storage speedups with little performance loss. We therefore

concluded that we can coarsen the curve and achieve good results.

5 DISCUSSION & CONCLUSION
We propose an effective and efficient method for graph represen-

tation that can be applied to both labeled and unlabeled datasets,

making use of the relevant attribute and structural information,

respectively. In doing so, we showcase how to identify critical distin-

guishing information in a graph and achieve competitive predictive

performance, while remaining completely parameter-free in the

node label histogram and max degree curve. Our approach achieved

the best classification performance across datasets, as measured

5 20 40 60 80 100

60

65

70

75

80

85

Feature representation dimension 𝑑

C
l
a
s
s
i
fi
c
a
t
i
o
n
a
c
c
u
r
a
c
y

BZR_MD COX2_MD

DHFR_MD ER_MD

BZR COX2

DHFR PROTEINS

Figure 5: Classification performance on labeled datasets
when coarsening FC-V, i.e., using feature vectors of varying
dimension 𝑑 to represent each curve.

by the 𝐿2 distance to the best performing method, showing that

our approach works consistently well on all datasets. While our

current approach already exhibits strong performance, we note that

it does so while only using relatively basic information about the

graph in the filtration curves: the node labels and count of con-

nected components respectively. Incorporating more sophisticated

information is a natural next step, as is exploring the combination

of curve descriptors with other graph representations, such as with

the feature vector generated by the Weisfeiler–Lehman algorithm.

Furthermore, there is much to be explored in how to leverage

the beneficial properties (described in Section 3.2) of representing a

graph as a curve. Representing a graph using step functions can be

used for a myriad of purposes, such as calculating the 𝐿1 norm of the

mean filtration curves, by class, and performing hypothesis testing

to see if there is a significant difference between the two classes,

as was suggested by Rieck et al. [28]. Preliminary experiments

suggest that classification performance of our method is associated

with statistically significant differences in the per-class filtration

curve norms. Hypothesis testing appears to enable us to gauge the

topological nature of a dataset. We plan on investigating potential

applications of such properties as an extension of our work.

ACKNOWLEDGMENTS
This research was supported by the Alfried Krupp Prize for Young

University Teachers of the Alfried Krupp von Bohlen und Halbach-

Stiftung (K.B.).

REFERENCES
[1] Kubilay Atasu and Thomas Mittelholzer. 2019. Linear-Complexity Data-Parallel

Earth Mover’s Distance Approximations. In ICML, Vol. 97. PMLR, 364–373.

[2] Serguei A. Barannikov. 1994. The Framed Morse Complex and its Invariants.

Advances in Soviet Mathematics 21 (1994), 93–115.
[3] Eric Berry, Yen-Chi Chen, Jessi Cisewski-Kehe, and Brittany Terese Fasy.

2018. Functional Summaries of Persistence Diagrams. arXiv e-prints, Article
arXiv:1804.01618 (2018), arXiv:1804.01618 pages. arXiv:1804.01618 [stat.ME]

[4] Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and

Bastian Rieck. 2020. Graph Kernels: State-of-the-Art and Future Challenges.

Foundations and Trends® in Machine Learning 13, 5-6 (2020), 531–712.

[5] Karsten Borgwardt andHans-Peter Kriegel. 2005. Shortest-path kernels on graphs.

In Proceedings of the Fifth IEEE International Conference on Data Mining. IEEE
Computer Society, Washington, DC, USA, 74–81.

[6] KarstenM. Borgwardt, Cheng SoonOng, Stefan Schönauer, S. V. N. Vishwanathan,

Alex J. Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via

graph kernels. Bioinformatics 21, suppl 1 (2005), i47–i56.
[7] Horst Bunke and Kaspar Riesen. 2007. A Family of Novel Graph Kernels for

Structural Pattern Recognition. In Progress in Pattern Recognition, Image Analysis
and Applications. Springer, Heidelberg, Germany, 20–31.

[8] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and

Yuhei Umeda. 2020. PersLay: A Neural Network Layer for Persistence Diagrams

and New Graph Topological Signatures. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, Vol. 108. PMLR, 2786–2796.

[9] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and Relieving the Over-Smoothing Problem for Graph Neural Networks from the

Topological View. Proceedings of the AAAI Conference on Artificial Intelligence 34,
4 (2020), 3438–3445.

[10] Ilya Chevyrev, Vidit Nanda, and Harald Oberhauser. 2020. Persistence Paths and

Signature Features in Topological Data Analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence 42, 1 (2020), 192–202.

[11] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. 2002. Topological

Persistence and Simplification. Discrete & Computational Geometry 28, 4 (2002),

511–533.

[12] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. 2020. A Fair

Comparison of Graph Neural Networks for Graph Classification. In ICLR.
[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML. PMLR,

1263–1272.

[14] Robert Glem, Andreas Bender, Catrin Hasselgren, Lars Carlsson, Scott Boyer,

and James Smith. 2006. Circular fingerprints: Flexible molecular descriptors with

applications from physical chemistry to ADME. IDrugs : The Investigational Drugs
Journal 9 (2006), 199–204.

[15] Alexander Grigor’yan. 2009. Heat Kernel and Analysis on Manifolds. American

Mathematical Society.

[16] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. 2017. Deep

Learning with Topological Signatures. In NeurIPS, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran

Associates, Inc., 1634–1644.

[17] Christoph D. Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland

Kwitt. 2020. Graph Filtration Learning. In ICML, Hal Daumé III and Aarti Singh

(Eds.), Vol. 119. PMLR, 4314––4323.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[19] Risi Kondor and Horace Pan. 2016. The Multiscale Laplacian Graph Kernel. In

NeurIPS, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.).

Curran Associates, Inc., 2990–2998.

[20] Nils Kriege and Petra Mutzel. 2012. Subgraph Matching Kernels for Attributed

Graphs. In ICML.
[21] Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. 2016. On Valid

Optimal Assignment Kernels and Applications to Graph Classification. InNeurIPS.
1623–1631.

[22] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. 2020. A Survey on

Graph Kernels. Applied Network Science 5, 1 (2020), 6.
[23] Yong Lin, Linyuan Lu, and Shing-Tung Yau. 2011. Ricci curvature of graphs.

Tohoku Mathematical Journal, Second Series 63, 4 (2011), 605–627.
[24] H. Ling and K. Okada. 2007. An Efficient Earth Mover’s Distance Algorithm

for Robust Histogram Comparison. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29, 5 (2007), 840–853.

[25] Christopher Morris, Nils M. Kriege, Kristian Kersting, and Petra Mutzel. 2016.

Faster Kernels for Graphs with Continuous Attributes via Hashing. In Proceedings
of the 16th IEEE International Conference on Data Mining. 1095–1100.

[26] T. Ramraj and R. Prabhakar. 2015. Frequent Subgraph Mining Algorithms – A

Survey. Procedia Computer Science 47 (2015), 197–204. Graph Algorithms, High

Performance Implementations and Its Applications (ICGHIA 2014).

[27] Bastian Rieck, Christian Bock, and Karsten Borgwardt. 2019. A Persistent

Weisfeiler–Lehman Procedure for Graph Classification. In ICML. PMLR, 5448–

5458.

[28] Bastian Rieck, Filip Sadlo, and Heike Leitte. 2020. Topological Machine Learning

with Persistence Indicator Functions. In Topological Methods in Data Analysis and
Visualization V, Hamish Carr, Issei Fujishiro, Filip Sadlo, and Shigeo Takahashi

(Eds.). Springer, 87–101.

[29] Kaspar Riesen. 2015. Graph Edit Distance. In Structural Pattern Recognition
with Graph Edit Distance: Approximation Algorithms and Applications. Springer,
Chapter 2, 29–44.

[30] Nino Shervashidze and Karsten Borgwardt. 2009. Fast subtree kernels on graphs.

In NeurIPS. 1660–1668.
[31] N. Shervashidze, P. Schweitzer, E. Jan van Leeuwen, K. Mehlhorn, and K. M.

Borgwardt. 2011. Weisfeiler–Lehman Graph Kernels. Journal of Machine Learning
Research 12 (2011), 2539–2561.

[32] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned

filters in convolutional neural networks on graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 3693–3702.

[33] Jeffrey J. Sutherland, Lee A. O’Brien, and Donald F. Weaver. 2003. Spline-fitting

with a genetic algorithm: a method for developing classification structure-activity

relationships. Journal of Chemical Information and Computer Sciences 43, 6 (2003),
1906–1915.

[34] Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and

Karsten Borgwardt. 2019. Wasserstein Weisfeiler–Lehman Graph Kernels. In

NeurIPS, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and

R. Garnett (Eds.). Curran Associates, Inc., 6436–6446.

[35] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and

Emmanuel Müller. 2018. NetLSD: Hearing the Shape of a Graph. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2347–2356.

[36] Yuhei Umeda. 2017. Time Series Classification via Topological Data Analysis.

Transactions of the Japanese Society for Artificial Intelligence 32, 3 (2017), D–

G72_1–12.

[37] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In ICLR.
[39] Ze Ye, Kin Sum Liu, Tengfei Ma, Jie Gao, and Chao Chen. 2020. Curvature Graph

Network. In ICLR.
[40] Qi Zhao and YusuWang. 2019. Learning metrics for persistence-based summaries

and applications for graph classification. In NeurIPS. 9855–9866.

https://arxiv.org/abs/1804.01618

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Generating Filtration Curves
	3.2 Properties of Filtration Curves

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Classification Performance
	4.4 Runtime Analysis
	4.5 Coarsening the Curve

	5 Discussion & Conclusion
	Acknowledgments
	References

