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Abstract
Clustering algorithms support exploratory data analysis by grouping inputs that share similar features. Especially the clustering
of unlabelled data is said to be a fiendishly difficult problem, because users not only have to choose a suitable clustering
algorithm but also a suitable number of clusters. The known issues of existing clustering validity measures comprise instabilities
in the presence of noise and restrictive assumptions about cluster shapes. In addition, they cannot evaluate individual clusters
locally. We present a new measure for assessing and comparing different clusterings both on a global and on a local level. Our
measure is based on the topological method of persistent homology, which is stable and unbiased towards cluster shapes. Based
on our measure, we also describe a new visualization that displays similarities between different clusterings (using a global
graph view) and supports their comparison on the individual cluster level (using a local glyph view). We demonstrate how our
visualization helps detect different—but equally valid—clusterings of data sets from multiple application domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction techniques

1. Introduction

Clustering algorithms play an important role in exploratory data
analysis. Their partitions help users detect interesting patterns in
their data. This leads to a better understanding of salient properties
and supports creating mental models of even complex multivariate
data sets. Production-quality clustering libraries [PVG∗11] make
it easy to obtain different clusterings of a data set—the challeng-
ing part lies in assessing them. Clustering assessment consists of
two tasks: First, a suitable clustering algorithm needs to be cho-
sen. Second, the parameters of the algorithm need to be config-
ured. A well-known adage in the clustering community states that
“There is no best clustering algorithm. [. . . ] When there is a good
match between the model and the data, good partitions are ob-
tained.” [Jai10]. Users hence often employ multiple clustering al-
gorithms to their data and need to compare them with each other.
Most clustering algorithms, such as the k-means algorithm, use a
single parameter k that determines the number of clusters. Finding
suitable values for k is still an active topic of research within the
clustering community. Commonly, different clustering algorithms
are run with varying parameters. For each run, a clustering valid-
ity index such as the Dunn index [HBV01] is evaluated and k is
selected such that the index shows the best value. While cluster-
ing validity indices are useful for comparing multiple clusterings
from the same algorithm, their utility for exploratory data analy-
sis is limited—complex cluster geometries often lead to unstable

results so that a suitable k fails to be found even for small data
sets like the “Iris” data [ZM14]. Furthermore, existing clustering
validity indices are unable to assess individual clusters of a clus-
tering without referring to labels, which are often unavailable in
real-world data sets.

Especially when dealing with multivariate unlabelled data sets,
users need to be supported in choosing a suitable clustering al-
gorithm and a suitable amount of clusters. Since clustering is a
method for detecting interesting patterns in data, visualizations for
comparison and evaluation need to play an integral part in this pro-
cess. In this paper, we present visualizations of clusterings from
two different perspectives. Globally, our clustering similarity graph
arranges clusterings by similarity to provide an overview. Locally,
our cluster map shows the individual clusters making up a clus-
tering, arranged as glyphs among a common reference embedding
of the data. The glyphs enable users to see how a given cluster-
ing partitions their data. This information permits the comparison
of clusters among each other and among different clusterings of
the data. Our visualizations are driven by an underlying cluster-
ing assessment measure, based on persistent homology, a method
from computational topology. By focusing on the topology of a data
set, our measure is robust, unbiased concerning cluster shapes—i.e.
it shows no preference for e.g. convex or concave clusters—and
hence less prone to the shortcomings of existing clustering validity
measures. Furthermore, our measure provides a well-defined way
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of comparing clusterings, both on a global and on a local level. We
demonstrate the utility of our framework by analysing clusterings
of data sets with varying complexities.

2. Related work

Clustering algorithms & clustering evaluation. A recent sur-
vey [XT15] shows that there is a nigh-uncountable amount of clus-
tering algorithms available nowadays. Clustering remains one of
the most important techniques for understanding multivariate data
sets. Now, several decades after the first clustering algorithms,
many challenging issues remain. For instance, there still is no an-
swer to the question of what constitutes a good cluster [Jai10].
While there are many indices available for assessing aspects of a
given clustering [HBV01], they often suffer from unstable results
in the presence of noise, cluster boundary overlaps or complicated
geometries [AGM∗13].

Clustering & visualization. The visualization community has al-
ready taken a great interest in helping users better understand the
results of clustering algorithms. The hierarchical clustering ex-
plorer [SS02] enables biologists to interact with different hierar-
chical clusterings of microarray experiment data. Various model-
based indices and auxiliary visualizations aid in understanding not
only the data space but also the decisions made by the clustering
algorithm. While some methods aim for evaluating clusters within
auxiliary visualizations, e.g. parallel coordinate plots [HVW10] or
scatterplots [EDF08], others let users modify the results of clus-
tering algorithms by e.g. splitting data into subgroups, which are
then clustered separately [LSP∗10]. This helps detect relations that
would otherwise be obscured by classical methods. A similar idea
of cluster modification is also prevalent in visual analytics tools.
Nam et al. [NHZI07], for example, let users “sculpt” clusters by
changing the relevance of different attributes in the data, while us-
ing several auxiliary visualizations to make sense of the current
clustering. Schreck et al. [SBvLK09] embed clustering analysis in
a general visual analytics workflow. Their system permits modi-
fying clustering results as well as verifying their validity, but for-
goes traditional clustering algorithms in favour of self-organizing
maps. Hence, the system does not permit the comparison of multi-
ple clustering results. Tatu et al. [TMF∗12] support the clustering
process by pre-selecting interesting subspaces in the data, which
are then clustered using hierarchical clustering. Users may then in-
teract with dissimilar subspaces to understand their structures. This
approach is somewhat orthogonal to ours. It helps explore patterns
in the data prior to applying any clustering algorithms. Pilhöfer et
al. [PGU12] developed a method for re-ordering categorical vari-
ables to improve visualizations of multiple clusterings. This per-
mits tracking similarities of partitions over different clusterings.
Their approach is complementary to our method because we focus
more on exploring the shapes of individual clusters.

Computational topology. Topological methods have become ma-
ture in recent years and are now offering another view on multi-
variate data sets. Singh et al. [SMC07] developed MAPPER, a vi-
sualization combining clustering methods with representations of
the connectivity of data. Lum et al. [LSL∗13] demonstrated how

Figure 1: Calculating persistent homology of a manifold M (left)
with a height function f . The extended persistence diagram (right)
serves as a fingerprint.

topology helps in analysing the shape of data. They presented im-
provements of the MAPPER technique that lead to insights into data
sets from various domains. Carlsson [Car14] outlined a general
workflow for topological data analysis, formalizing the clustering
shape descriptor we are using in this paper. Persistent homology
has also been employed successfully in very diverse contexts, in-
cluding shape description and comparison [BdFF∗08], visualiza-
tion [RML12, RL14], as well as machine learning [RHBK15].

3. Methods

In the following, we give a brief overview of the most important
details of persistent homology. We strive for clarity of exposition
and refer to Edelsbrunner and Harer [EH10] for an in-depth intro-
duction.

3.1. Persistent homology

The basic idea of persistent homology is to describe the geomet-
rical and topological properties of a function defined on a mani-
fold, i.e. a space that locally has the structure of some Rn. In the
following, we assume that we have a manifoldM ⊆Rn and a func-
tion f ∶M→R. We need f to have a finite number of critical points,
i.e. points at which its gradient vanishes. Furthermore, the function
values a1, . . . ,am at the critical points need to be pairwise distinct.
Figure 1, left, shows an example for M and f . Since M is two-
dimensional, its critical points are local extrema or saddles.

When sweeping the values of f from low to high values,
the topology of its sublevel sets changes only at critical values
a1, . . . ,am. The critical values give rise to topological features of
different dimensions: Connected components (dimension 0), tun-
nels or holes (dimension 1), and voids (dimension 2). Higher-
dimensional features can be similarly described but only occur
in higher-dimensional manifolds. During the sweep, a saddle ei-
ther merges two connected components, thereby destroying the one
with the larger height, or creates a new hole. A minimum always
creates a new connected component in the corresponding sublevel
set. A maximum destroys a hole by closing it or, in the case of the
global maximum, creates a new void.
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Having accounted for all types of critical values, we may now
pair the values of “creators” and “destroyers”. The persistence di-
agram D f of a function f contains points from R2 that corre-
spond to the pairings of critical values; see Figure 1, right, for
an example. Given a point (c,d) ∈ D f , its persistence is defined
as pers(c,d) ∶= ∣c − d∣. Points with a high persistence represent
large-scale features of f , while points with a low persistence repre-
sent small-scale features. The component created at a2 and merged
at a3 in Figure 1, for example, is a typical small-scale feature.

If we follow the sweep as defined above, we observe that we
cannot pair the global minimum at a1, the two saddles at a4 and a5,
and the global maximum at a6. In the classical persistence algo-
rithm [ELZ02], these points remain unpaired, which makes calcu-
lating pers(⋅) difficult. To resolve this issue, we first pair a1 with
a8. This denotes the range of the function f on M. Next, we pair
the two saddles with each other—in both directions, so that we
have (a4,a5),(a5,a4) ∈D f . These pairs are obtained by calculat-
ing the extended persistence diagram [CSEH09]. In Figure 1, they
are depicted as yellow points. The extended persistence diagram
ensures that no critical point remains unpaired. Its calculation re-
quires a second sweep through the superlevel sets of f .

We can see that small perturbations in the values of f only
slightly change the pairing and the persistence diagram D f . This
intuitive notion of stability has been formally [CSEH07] and ex-
perimentally [BdFF∗08] proven, making persistent homology an
appealing technique.

Computational aspects & implementation. For calculating per-
sistent homology on real-world multivariate data sets, we use a
Rips graph Rε and a distance function d(⋅, ⋅) to obtain connectiv-
ity information. Rε contains a vertex v for each data point and an
edge (u,v) between two points if d(u,v) ≤ ε. The parameter ε con-
trols the coarseness of Rε. The following heuristic [RML12] has
proven to be useful and robust: For each data point, we estimate
the average of the distances to its nearest neighbours and use the
median of these averages as ε. Because Rε′ ⊆ Rε for ε

′ ≤ ε, we
get information about all scales up to the selected threshold when
calculatingRε, making this a stable construction [CdSO14].

Given a function f on the data (see Section 3.2), we as-
sign every vertex v the value f (v) and every edge (u,v) the
value max{ f (u), f (v)}. By traversing vertices and edges in order
of ascending function values, we can calculate persistent homology
in dimensions zero and one. Extended persistence requires a sec-
ond pass in descending order. This computation is highly efficient;
it has a complexity of only O(n logn+ n ⋅α(n)), where n denotes
the number of data points and α(⋅) is the extremely slow-growing
inverse of the Ackermann function.

Total persistence. Since persistence diagrams summarize the
geometrical-topological behaviour of functions, we need a method
for comparing them. A very useful summary statistic in this con-
text is given by the total persistence [CSEHM10] of a function f .
Given the persistence diagram D f of the function f , total persis-
tence is defined as the sum of all squared persistence values, i.e.

Pers(D f ) ∶= ∑
(c,d)∈D f

pers(c,d)2. (1)

Conceptually, the total persistence of a function is similar to the
concept of total variation in mathematics. Like the total variation,
Pers(⋅) measures the amount of changes that are characteristic of
a function. It thus serves as a coarse characterization of function
behaviour.

3.2. A shape descriptor function for multivariate data

Persistent homology requires a scalar function f of the data set.
Lum et al. [LSL∗13] present a function that is particularly useful
for clustering analysis because it permits the detection of interest-
ing features in real-world data sets [Car14]. We have

f (x) = ∑
y∈X

d(x,y)2, (2)

whereX denotes the input data and d(⋅, ⋅) denotes a distance mea-
sure such as the Euclidean distance. The squaring ensures that the
effects of small distance values are attenuated. Outlying points are
indicated by high values in f . In practice, we want higher function
values to indicate central points, so we modify the previous equa-
tion to

f̂ (x) = (max f − f (x))/(max f −min f ) , (3)

where max f and min f are the extremal values of f .

The expressive power of a shape descriptor largely hinges on
its discriminative properties. Biasotti et al. [BdFF∗08] analyse to
what extent these properties are present in certain functions. Use-
ful functions include density estimators [RL15], Laplacian eigen-
functions [SMC07], and kernel regression estimators such as the
Nadaraya–Watson estimator [Nad64]. While our workflow can
handle any function, we focus on a single one in this paper for
reasons of clarity.

3.3. Assessing clusterings

In order to assess clusterings of a data set, we first calculate a Rips
graph Rε as described above on the unclustered data and assign it
the values of the shape descriptor f from the previous section. A
clustering C = {C1, . . . ,Ck} of the data induces a partition of the
vertex indices of Rε. A partition is a finite number of sets that are
pairwise disjoint—no point may occur in more than one set—such
that their union contains all indices in the data. C induces a partition
on the Rips graph Rε by connecting vertices u and v if (u,v) ∈Rε

and (u,v) ∈ Ci for some i. Hence, a weighted edge is only kept if
both of its vertices are in the same cluster. The result is a set of
Rips graphs, each corresponding to a cluster Ci ∈ C. Calculating
persistent homology on each of the Rips graphs results in a set of
persistence diagrams DC = {D1, . . . ,Dk}. Each diagram Di mea-
sures the topological features of the shape descriptor f present in
the partition induced by C.

Our measure is based on the following assumption: If C is suit-
able, it should cluster data such that the most interesting features
measured by f are retained. Figure 2 demonstrates this for some
examples. The right-most clusterings are retaining all features of f .
Optimally, we would like the persistence diagram D f of the unpar-
titioned data to be the disjoint union of the individual diagrams Di,
i.e. D f =D1 ⊍ ⋅ ⋅ ⋅ ⊍Dk, with Di ∩D j = ∅ for i ≠ j. In this case, all
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0.29 0.80 0.91 1.00

0.03 0.54 0.67 1.00

1.00 1.00 0.66 1.00

0.64 0.66 1.000.64

Figure 2: Different clusterings for several test data sets and the
values of our global measure σGlobal. Higher values indicate that
more geometrical-topological variation has been retained.

features of f remain represented in one unique cluster of C. We can
use total persistence to measure the amount of features that are lost.
Ideally, the total persistence of the data remains unchanged, so that
we have PersD f =∑k

i=1 PersDi.

Global assessment of a clustering. Following the previous equa-
tions, we can assess the global quality by calculating

σGlobal =
∑k

i=1 Pers(Di)
Pers(D f )

, (4)

i.e. the ratio of total persistence that is being retained by the cluster-
ing. σGlobal has a range of [0,1], with 1 meaning that the amount of
topological variation has been fully retained by the partition. Note
that we need to treat zero-dimensional persistent homology differ-
ently when calculating Pers(⋅): For each connected component, we
ignore the pair containing the extremal function values. For exam-
ple, in Figure 1, we ignore (a1,a8). This is similar to the concept of
reduced homology [EH10, p. 83] and ensures that we do not overes-
timate the total persistence when splitting a connected component.
Else, a split would result in at least one additional pair of extremal
function values. The remaining vertices belonging to a connected
component are still taken into account, though. We use the values
of σGlobal to colour-code clusterings in our clustering similarity vi-
sualization (Section 3.4.1). Figure 2 shows some example cluster-
ings along with the values for σGlobal. The data sets depicted in this
figure are known to exhibit interesting behaviour of clustering al-
gorithms that already occurs in two dimensions [PVG∗11]. In the
supplementary materials, we also show that existing clustering va-
lidity indices are either incapable or unstable with respect to their
assessment of these data sets.

Local assessment of a clustering. Assessing a clustering locally,
i.e. on the level of individual clusters, is more complex and to the
best of our knowledge, our measure is the only one capable of
such an assessment without requiring class labels. We first calculate
D f ,i ∶=D f ∩Di. The persistence diagram D f ,i contains topological
features of the original data that are retained in the clustering. This
does not account for topological features that are slightly changed
by the partition because the connectivity of the partitioned Rips
graph changes as well. For each unaccounted point p in Di ∖D f ,i
we find its nearest neighbour q, measured using the L∞ distance,
in D f . If 2∥p−q∥∞ ≤ pers(p), we match the two points and add q
to D f ,i. The point q hence becomes the new representative for the
topological feature described by p. We now calculate

σLocal =
Pers(D f ,i)
Pers(Di)

, (5)

i.e. the ratio of total persistence both present in the cluster and the
complete data set (numerator) to the amount of the total persistence
in the cluster (denominator). σLocal also has a range of [0,1], with
1 meaning that all features found in the cluster are also present
in the original data. The idea behind this measure is that a cluster
should contain only features of the function f that are present in
the original data set. We use the values of σLocal for colour-coding
our local cluster visualization (Section 3.4.2).

Properties of total persistence. Both σGlobal and σLocal may be
thought of as topological equivalents of the explained variance
or explained variation measures from statistical modelling. We
deem a clustering C to be suitable when it explains much of the
geometrical-topological variation present in the data. Total persis-
tence has several beneficial properties in comparison to methods
that only assess the geometry of the data: (i) As a topological mea-
sure, it even works for complex cluster shapes. (ii) It is unbiased
with respect to the size of clusters—a small cluster may still contain
large-scale features. (iii) It is stable because it considers the scale of
features—Pers(⋅) barely changes if only few low-persistence points
in a persistence diagram are changed. (iv) It permits the assessment
of clusterings on a local level without requiring label information.

Limitations. Our measure is incapable of distinguishing cluster-
ings when individual clusters are well-separated on a large scale
and similarly-shaped. For example, some clusterings in the third
row of Figure 2 cannot be told apart. Three of the four splits are
considered equally valid by our measure; one split destroys much
topological information by splitting two of the “blobs”, however,
so it gets penalized with σGlobal = 0.66. Similarly, different clus-
terings shown in the fourth row will also not be rated highly by
our measure because the clusters are too close and do not contain
any prominent topological features. Our measure penalizes these
splits and we feel that for these kinds of data, any split should be
penalized. Locally, each of the individual clusters is considered to
be a good fit, though. In the supplementary materials, we compare
the behaviour of our measure on these data sets with existing clus-
tering validity indices. For the last data set, existing measures are
incapable of reaching a consensus, tending towards more clusters
rather than fewer.
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3.4. Visualization

Our visualization provides two views on the data. First, given mul-
tiple clusterings of a data set, we group them using the clustering
similarity graph. The graph visualizes the similarity of different
clusterings. This visualization indicates the complexity of the un-
derlying data set. If many clusterings agree, for example, the data
may exhibit a simple structure. Second, we enable the compari-
son and assessment of individual clusters of a data set through the
cluster map. The map helps understand the patterns that occur in
individual clusters, making it possible to assess whether they are
interesting and informative.

In the following, we will colour-code clusterings using the values
of σGlobal and individual clusters using the values of σLocal. Since
both measures have the same range, we can use the same colours to
indicate the amount of explained topological variation in the data:
Green indicates values in [0.80,1.00], yellow indicates values in
[0.60,0.80), and red indicates values less than 0.60. Similar ranges
are being used in statistical modelling, where a model is considered
bad when it cannot account for more than 60% of the variation.

3.4.1. Clustering similarity graph

To handle the global comparison of multiple clusterings, we require
a similarity measure. As the comparison of different clusterings is
an integral part of data analysis, numerous similarity measures al-
ready exist [Mei07]. Since our goal is to compare multiple parti-
tions among each other, we prefer similarity measures that are also
metrics in the mathematical sense. In particular, we require the tri-
angle inequality to be satisfied, i.e. d(x,y) ≤ d(x,z)+ d(z,y), for
clusterings x,y,z. The triangle inequality ensures that two cluster-
ings x,y that are similar to the same cluster z must be similar to
each other as well. Most similarity measures do not satisfy this in-
equality, thereby yielding inconsistent similarity values. We use the
Mirkin metric [Mei07], which is a metric on the space of cluster-
ings. It is defined by

d(x,y) ∶= 2(n01+n10) , (6)

where n01 is the number of pairs of points that are in different clus-
ters under x but in the same cluster under y, and n10 is defined
vice-versa. The Mirkin metric is known to work less well when
comparing clusterings with different amounts of clusters among
each other. This poses no problem for our visualization because we
only use the metric to compare clusterings with the same number
of clusters.

We build the clustering similarity graph visualization using the
Mirkin metric by showing each individual clustering as a node. For
each node, our application stores the corresponding clustering al-
gorithm and its parameters, which we will subsequently only refer
to if it helps explain a given clustering better. The Mirkin metric
yields a matrix of pairwise distances between the points, and we
use force-directed graph visualization techniques [BETT99, Chap-
ter 10] to embed the points in 2D. Edges between nodes indicate
the two nearest neighbours of a given clustering in order to support
the orientation of the user. The edge opacity reflects the amount of
overlap between two clusters, measured using the Rand index, i.e.

sRand(x,y) ∶= n11+n00

(n
2)

, (7)

where n is the number of data points, n11 is the number of pairs of
points that are in the same clusters under both x and y and n00 is the
number of pairs of points that are in different clusters under both x
and y. While the Rand index is not a proper metric, it has the advan-
tage of being simple to understand. Node colours correspond to the
values of σGlobal (Section 3.3) and indicate how well a clustering
overall retains features in the data.

3.4.2. Cluster map

To permit the exploration of individual clusters in a data set, we
provide a combination of a glyph-based view and a simplified den-
sity projection of the data. We first use a dimensionality reduction
algorithm such as principal component analysis to obtain a two-
dimensional embedding of the original data set. This embedding
will serve as an invariant map of the data. The map provides a
shared reference coordinate system on which different clusterings
can be compared. We visualize the embedding as a hexagonally-
binned plot (using Sturges’ formula to find an approximate number
of bins), because it is known to have better data aggregation prop-
erties than a rectangularly-binned plot [CLNL87]. We colour each
cell according to the number of points it contains. Lighter colours
indicate few points, while more saturated colours indicate many
points. This serves as a simple visualization of the density distri-
bution within the embedding of the data, which supports reasoning
about clusterings [TAE∗09].

In addition to the map, a second component of our visualization
is a set of glyphs for representing individual clusters. Each glyph
contains a star plot [CCKT83] that depicts a simplified represen-
tation of the data points within the cluster. Data points are repre-
sented using a band that shows the minimum, median, mean, and
maximum values of each attribute (i.e. each dimension) for all data
points in the cluster. Mean and median have been selected to in-
dicate whether the distribution of values of a specific dimension
within a given cluster is skewed. In conjunction with visualizing
the minimum and maximum values, this improves understanding
the “profile” of a cluster. The background of each glyph is colour-
coded according to the respective value of σLocal (Section 3.3). It
indicates how well a cluster matches the geometrical-topological
features present in the shape descriptor f . The glyphs are placed
automatically along the map to minimize clutter. Each glyph is
then connected to the centroid of the cluster it represents in or-
der to highlight cluster placements. Our implementation optionally
employs semantic zooming to offer more details on demand. In ad-
dition, the user may trigger the visualization of the extents of a
cluster within the map. This helps when comparing the boundaries
of multiple clusters within the data space.

4. Results

In the subsequent sections, we analyse different clusterings of mul-
tivariate data sets of varying complexities. We selected data sets
that are known to be challenging to cluster in order to highlight the
benefits of our analysis pipeline. We use different clustering algo-
rithms from the SCIKIT-LEARN toolkit [PVG∗11]. Since the goal
of this paper is not the evaluation of different clustering algorithms
but rather their clusterings, we do not describe every clustering re-
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Figure 3: Clustering similarity graphs (top) and cluster maps for
several “Iris” data clusterings.

sult in detail. We instead explain interesting properties of selected
clusterings by means of our visualizations and our measures.

4.1. Iris

The “Iris” data set [Lic13] contains 150 measurements of 4 at-
tributes of 3 different “Iris” flower species, I. setosa, I. virginica,
and I. versicolor. It is challenging because the flowers cannot be
clustered correctly without knowing the species information. There
are two pronounced clusters in the data, one for I. setosa, the other

k = 2 k = 3 k = 4 k = 5 k = 6
BetaCV 0 0.187 0.215 0.253 0.235
C-index 0.056 0.069 0.059 0.062 0.057
WCS 89.90 90.60 81.76 72.67 67.74
Dunn index 0.339 0.098 0.105 0.117 0.133
NC 1.652 2.763 3.792 4.812 5.820
Silhouette 0.630 0.480 0.434 0.353 0.383
σGlobal 1.0 0.967 0.627 0.561 0.561

Table 1: Common clustering validity indices and our global mea-
sure σGlobal for the “Iris” data set. For every k, we have used the
best possible clustering—measured using the Rand index—with re-
spect to the species labels.

one for the remaining two species. Splitting the I. virginica and I.
versicolor cluster is hard because its boundaries are unclear. Fig-
ure 3, top, shows the clustering similarity graphs for selected clus-
terings with different amounts of clusters. We can see that starting
with k = 4, most clusterings are incapable of retaining large amount
of important features in the data. Without using any class labels,
our topological measure thus suggests that k = 2 and k = 3 are more
suitable for the number of clusters than k ≥ 4.

Table 1 shows how different clustering validity indices assess
clusterings of these data for an increasing number of clusters. The
partitions with k = 2 and k = 3 are optimal with respect to the species
labels. The best value for each measure is shown in bold. The first
three rows contain measures for which smaller values indicate a
better fit—for the remaining rows, larger values are better. None
of the measures suggests k = 3 as an optimal number of clusters.
Nevertheless, our measure indicates that k = 3 is still a viable op-
tion with less than 4% of geometrical-topological information be-
ing lost. It is the only measure capable of indicating that cluster-
ings with k ≥ 4 are significantly less suitable than clusterings for
k = 2,3. Please refer to the supplementary materials for a more de-
tailed comparison.

In the following, we will refer to the individual clusters as de-
picted in Figure 3.

Two clusters. We first analyse two clusterings with k = 2 in or-
der to get an intuition for the different visualizations. Clustering A
contains the correct species assignments. We have σLocal = 1.0 for
both A1 and A2, meaning these clusters retain all features of the
data. By showing the cluster extents of A1 using a thicker bound-
ary for its hex cells, we can confirm the simple shape of this cluster,
which contains all I. setosa flowers. The glyph shows that flowers
in A1 have small petal lengths/widths and extremely large sepal
widths. By contrast, A2 contains flowers with a significantly larger
petal lengths/widths. Clustering B is shown to be very different. It is
distant from the other clusterings in the clustering similarity graph
and has a very low σGlobal value. The cluster map shows that B1
and B2 also have low σLocal values, making these clusters dubious.
The disconnected cluster extents (shown for B2) and the centroid
placement of B1 further confirm this. The extremal bands of B1 in-
dicate that it also contains flowers with smaller sepal widths, just
like B2—this clustering is thus far from optimal, just as indicated
by our measures.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.



B. Rieck & H. Leitte / Exploring and Comparing Clusterings of Multivariate Data Sets Using Persistent Homology

Three clusters. We next analyse clusterings with k = 3. The spatial
proximity of many clusterings and high edge opacities in the clus-
tering similarity graph indicate a strong overlap between most of
the partitions. All clusterings are assigned values of σGlobal ≥ 0.90,
except C. We now compare C with D because the clustering sim-
ilarity graph shows them to be most dissimilar. From the cluster
glyphs, we observe that C1 and D1 are very similar. However, the
cluster extents of D1 show that it misses lots of I. setosa flowers—
breaking up this pronounced cluster results in a lower σLocal value
in comparison to C1. This demonstrates how our measure σLocal
helps assess the individual clusters.

More clusters. The clustering similarity graph also helps evalu-
ate the behaviour of clusterings with a larger amount of clusters.
Figure 3, top, shows clusterings for increasing values of k. Already
for k = 4, all clusterings have σLocal < 0.80, meaning that less than
80% of the geometrical-topological features are retained globally
by the clustering. For k = 5 and k = 6, a few clusterings remain sta-
ble (with respect to σGlobal) because they prefer splitting up I. ver-
sicolor and I. virginica prior to splitting up the more compact and
concise I. setosa cluster. This retains some features of the data. We
also observe that clusterings become progressively dissimilar, as in-
dicated by edges with higher transparency, because there are more
possibilities for partitioning the data points. This demonstrates how
the clustering similarity graph, in combination with σGlobal, can be
used to quickly explore the overall suitability of different partitions
without having to explore them on a local level.

4.2. Olive oils

We use the “Olive oils” data from the UCI Machine Learning
Repository [Lic13]. It contains the ratios of 8 fatty acids (palmitic,
palmitoleic, stearic, oleic, linoleic, arachidic, linolenic and
eicosenoic) for 572 olive oils, produced in 9 different regions of
Italy. All variables have been scaled to represent a ratio between
zero and one. We explore the data set using different clusterings.
Figure 4, top, shows several clustering similarity graphs for the
“Olive oils” data. We can see that after k = 9 clusters, σGlobal val-
ues start to decay, i.e. clusterings only retain 60%–80% of the
geometrical-topological features in the data. Existing clustering va-
lidity indices cannot detect that either k = 3 or k = 9 are suitable
values for k. Please refer to the supplementary materials for more
details.

Three clusters. We first compare clusterings A and B with each
other. The cluster glyphs show that A1 and A2 contain oils with-
out any eicosenoic acid. The bands also show how A1 differs from
A2. Oils in A1 have e.g. lower amounts of oleic acid and higher
amounts of linoleic acid than oils in A2. A3 is characterized by non-
zero amounts of eicosenoic acid. The cluster extents—coloured ac-
cording to the cluster label—show that A1 and A2 are smaller than
A3. Few overlaps occur and the boundaries are placed in sparse
areas, whereas centroids are placed near dense areas—-see e.g. A2.

Clustering B has a lower σGlobal value. Its cluster map indicates
that lots of overlaps exist between the clusters. One partition, B3,
has a high σLocal value that makes it a potentially interesting par-
tition. In total, however, this clustering captures less geometrical-

D1

D2

oleic

C2C1

linoleic

eicosenoic

oleic

A2
A3

A1

B1 B2

B3

k=3 k=9 k=10 k=11

A

B

C D

Figure 4: Clustering similarity graphs (top) and selected cluster
maps for the “Olive oils” data.
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topological variation in the data and demonstrates the benefits of
using both σGlobal and σLocal to assess clusterings.

Nine clusters. The clustering similarity graph for k = 9 (Figure 4,
top) indicates that all clusterings satisfy σGlobal ≥ 0.60. The dis-
tances in the graph show that the clusterings are rather similar, ex-
cept for a single outlying one (C). Cluster C1 contains only few
oils and shares similar characteristics to oils in cluster C2, whose
centroid is located nearby in the map—the split between C1 and C2
thus seems arbitrary and is penalized by σLocal because these oils
are connected on all scales in the Rips graph due to their simi-
lar composition. This clustering was created by the DBSCAN al-
gorithm; a slight perturbation of its parameters results in merging
these clusters, which shows that the split was not justified in the
first place. Clustering D has the best σGlobal value of 0.951. Here,
we observe two new subgroups (D1 and D2) that do not appear
anywhere else. Their oils have a substantial amount of oleic acid.
However, the oils in D1 are too similar to some oils in D2, leading
our measure to consider this as a problematic cluster. Interestingly,
neither D1 nor D2 are consistent with respect to the original classes
of the data—their oils come from three different regions in Italy.
In summary, this analysis shows how our geometrical-topological
assessment helps (i) detect informative clusterings that go beyond
class label information (ii) and may even be able to support the
detection and correction of instabilities in clustering algorithms.

4.3. El Niño

El Niño refers to a powerful pattern in world climate that is charac-
terized by a distinct anomaly in sea surface temperatures in the Pa-
cific Ocean. The formation of El Niño is still not fully understood,
but it is known that the phenomenon causes catastrophic weather in
many parts of the earth. It occurs at irregular intervals (3–7 years)
and may last up to 2 years. In the following, we will analyse the “El
Niño” data set from the UCI Machine Learning Repository [Lic13].
The data set contains 178080 buoy measurements of five continu-
ous attributes in the Pacific Ocean, comprising a period of 18 years.
The complex parameter space and its size make this data set very
challenging to cluster. All clustering algorithms that we employed
exhibited problems when handling the data. These are caused by
the large number of measurements, which often differ only by small
amounts. We observed decreases in both σLocal and σGlobal values
already for k ≥ 3 (see Figure 5, top).

First, we exemplarily discuss a clustering with two clusters (A).
With σGlobal ≈ 0.978, it retains more than 97% of the geometrical-
topological features of the data. Figure 5 shows the corresponding
cluster maps. The data set is displayed as having a high-density
core with density decreasing towards the boundary. The visual-
ized cluster extents indicate that the partitions barely overlap. The
cluster glyphs show that A2 contains measurements with, on av-
erage, much warmer air temperatures (AT) and sea surface tem-
peratures (SST) than A1. Their σLocal values are high, so we con-
sider both clusters to be trustworthy. Since El Niño is commonly
associated with abnormally warm sea surface temperatures, clus-
tering A is highly informative. Referring back to the data set, we
found that measurements from A2 indeed predominantly arose in
El Niño years.

SST

AT

A2A1

B1 B2

B3

k=5k=2 k=3 k=4

A
B

Figure 5: Selected clustering similarity graphs and cluster maps
for the “El Niño” data set.

Next, we discuss a clustering with three clusters (B). It
has σGlobal ≈ 0.77, hence almost 80% of the features of the data are
retained. The cluster extents in clustering B overlap more than the
ones for clustering A. In particular, B2 and B3 have a large over-
lap. The glyph colours show that B2 and B3 have σLocal < 0.80.
Each cluster loses about 25% of the geometrical-topological vari-
ation. This loss is apparent in our glyph visualization. The glyph
bands depict mean values and spread, but this does not explain
why data points have been assigned to either B2 or B3 instead of
remaining in one cluster. The clear distinction between “extraor-
dinary measurements” and “regular measurements” as present in
clustering A is not apparent here. This clustering also shows the
advantages of assessing clusters individually: The glyph for B1 in-
dicates that it retains at least 80% of the features in the data. B1 has
σLocal ≈ 0.999, meaning that it fits the local structure of the data ex-
tremely well. In summary, even though clustering algorithms found
this data set challenging, their results still reveal useful information
about patterns in the data. Our visualization, combined with the
values for σGlobal and σLocal guides our attention and ensures that
we do not have to treat clustering results as “black boxes”.

5. Conclusion

We presented two visualizations for supporting users in explor-
ing and comparing different clusterings of multivariate data sets.

© 2016 The Author(s)
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Globally, our clustering similarity graphs permit the rapid explo-
ration of different clusterings by arranging them, using a cluster-
ing similarity measure. Locally, our cluster maps create a shared
reference coordinate system coupled with glyphs for representing
individual clusters that supports the comparison of clusters among
each other and among different clusterings. Our visualizations are
driven by two measures based on persistent homology that assess
the geometrical-topological properties of a clustering and individ-
ual clusters. We demonstrated the utility of our visualizations by
analysing three data sets of varying complexities.

Both our visualization and our measures can be realized effi-
ciently but the visualizations do not scale to substantially more
than about 10 dimensions. The cluster glyphs become unwieldy for
more dimensions. A similar issue pertains to the cluster map when
more than 10 clusters are present. These cases require a details-on-
demand approach. Nonetheless, these limitations still leave room
for interesting data sets. For higher-dimensional data sets, the se-
lection of a suitable dimensionality reduction algorithm for gen-
erating the cluster map is also important. An evaluation algorithm
based on persistent homology was recently proposed [RL15].

For future work, the integration of higher-dimensional topologi-
cal features could be investigated. This requires a generalization of
the Rips graph (the Vietoris–Rips complex) whose computation is
more complicated. The methods described in this paper still remain
fully applicable. Furthermore, it would be interesting to augment
the calculation of our measures with metrics between persistence
diagrams, such as the bottleneck distance [EH10, pp. 180–185].
This is challenging because the metrics are not designed to quan-
tify partial matches between persistence diagrams.
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1. Notation

We assume that we are given a data set X of n points in
some Rm. Furthermore, we assume that we may calculate
the distance d(x,y) between two points x and y. This permits
us to calculate the n×n distance matrix

D =
{

Di j
}n

i, j=1 (1)

with

Di j = d(xi,x j) (2)

being the distance between the ith and the jth data point.

Let C be a clustering with k clusters, i.e. C =
{C1, . . . ,Ck}, where cluster Ci contains ni = |Ci| points.
Given two subsets U and V of our input data, we define
D(U,V ) as the sum of distances with one index in U and
the other in V , i.e.

D(U,V ) = ∑
x∈U

∑
y∈V

di j, (3)

which is always well-defined. We denote the complement of
a set U by U .

There are two specific sets of distances we are interested
in. First, the intracluster distances are given as

Dintra =
1
2

k

∑
i=1

D(Ci,Ci), (4)

where we need the division by two because we count every
pair of distances twice. Second, the intercluster distances are
similarly given as

Dinter =
1
2

k

∑
i=1

D(Ci,Ci), (5)

with the same division as above.

Since the distance matrix D is symmetric and has a diag-
onal of zero, we may also consider D to be the weighted ad-
jacency matrix of the complete graph over our data points.

This makes it possible to count the number of intracluster
edges Nintra and the number of intercluster edges Ninter as

Nintra =
1
2

k

∑
i=1

ni (ni−1) (6)

and

Ninter =
k

∑
i=1

k

∑
j=i+1

nin j, (7)

respectively.

2. Clustering validity indices

If no ground truth information in the form of labels for the
data points is available, there are numerous clustering valid-
ity indices that measure certain properties of a clustering C
by means of the distance matrix D. Subsequently, we briefly
introduce several common clustering validity indices. We
will later compare them with the global clustering assess-
ment measure σGlobal that we describe in the paper. A com-
parison with our local measure σLocal is impossible because
no clustering validity index is capable of assessing a single
cluster on its own.

BetaCV. The BetaCV measure calculates the ratio between
the mean intracluster distance to the mean intercluster dis-
tance, i.e.

BetaCV =
Dintra/Nintra
Dinter/Ninter

=
Ninter Dintra
Nintra Dinter

, (8)

where small values are considered to be better because they
indicate that intracluster distances are, on average, smaller
than intercluster distances. In this case the clusters are well-
separated.

C-index. The C-indexrelates the intracluster distances to
the sum of the largest distances in the distance matrix. We
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have

C-index =
Dintra−Dmin(Nintra)

Dmax(Nintra)−Dmin(Nintra)
, (9)

where Dintra is again the sum of all intracluster distances,
Dmin(Nintra) is the sum of the Nintra smallest distances in
the distance matrix D (not including the diagonal), and
Dmax(Nintra) is the sum of the Nintra largest distances. The
C-index has values in [0,1]. Smaller values are considered to
be better because they indicate compact clusters.

Within-cluster-scatter. The within-cluster-scatter WCS is
another name for the intracluster distances Dintra that we
already encountered above. Small values are considered
good. The k-means algorithm attempts to minimize this
measure.

Dunn index. The Dunn index Dunn measures the ratio
between the minimum distance between points from differ-
ent clusters and the maximum distance between points from
the same cluster. We have

Dunn =
Dmin

inter
Dmax

intra
, (10)

where

Dmin
inter = min

i 6= j
{d(x,y) | x ∈ Ci,y ∈ C j} (11)

is the minimum intercluster distance and

Dmax
intra = max

i
{d(x,y) | x,y ∈ Ci} (12)

is the maximum intracluster distance. A large Dunn index
corresponds to a good clustering because it indicates that
even the closest distance between points in different clusters
is larger than the maximum distance within a cluster. Hence,
the Dunn index is maximized when we have very compact
clusters that are extremely far from each other.

NC. The normalized cut measure is motivated by graph-
theoretic cuts. If we take a single cluster Ci from the clus-
tering C, the distances of all edges with at least one vertex
in the cluster is an indicator of the volume of the Ci. We de-
note this sum of distances by D(Ci,X). If we consider Ci to
induce a cut in the graph, the weight of the cut is given by
all edges that go outside the cluster Ci. Hence, Ci induces
a cut whose weight is D(Ci,Ci). The normalized cut meas-
ure NC now measures the total sum of the ratio between the
cut weight and the volume of the cluster, i.e.

NC =
k

∑
i=1

D(Ci,Ci)

D(Ci,X)
, (13)

where higher values indicate better clusterings because they
imply that the intercluster edges have larger distances than
the intracluster edges. Again, small intracluster distances in
comparison to intercluster distances are indicative of a good
clustering.

Silhouette coefficient. The silhouette coefficient s measures
both the separation of clusters as well as their internal con-
nectivity. We first calculate a silhouette coefficient sx as

sx =
bx−ax

max{ax,bx}
, (14)

where ax is the average distance of point x to all other
points within its cluster, and bx is the average of all dis-
tances of points x to points in the closest other cluster. We
have sx ∈ [−1,+1], where +1 shows that x is much closer
to points in its own cluster and removed from other clusters,
0 indicates that x is on a cluster boundary, and −1 indicates
that x is closer to another cluster than its own—which may
indicate a mis-clustered point. The silhouette coefficient of
a clustering C is defined as the mean value of sx across all
points.

3. Expressive power

We observed that the expressive power of our persistence-
based measure, in conjunction with a suitable shape
descriptor for the data set, often outperforms existing clus-
tering validity indices. To this end, we added some tables
showing the values for indices introduced above.

3.1. Synthetic data: “Nested circles”

Table 1 shows the performance of clustering validity indices
on the “nested circles” data set. For the first three indices,
lower values are generally better. For the subsequent indices,
higher values indicate better clusterings. We have marked
the best value in each column. For the first data set, only
the Dunn index is capable of detecting a good clustering.
In Section 5 we will see that this index is prone to severe
instabilities, whereas our persistence-based measure σGlobal
remains stable.

Note that our measure is able to detect the correct clus-
tering over extremely large scales in the data. Even if the
two circles are being connected with some edges, these
edges will only introduce short-lived topological features.
The value of σGlobal thus remains unchanged.

Figure 1 shows the edges of the Rips graphRε for differ-
ent thresholds. Our measure is stable over the whole range
of these thresholds.

3.2. Synthetic data: “Nested arcs”

For the “nested arcs” data, shown in Table 2, the Dunn index
and our measure are the only measures capable of detecting a
suitable clustering. Again, the Dunn index is not stable. Even
if only three points—0.2% of the data—are misclassified,
the index drops by a factor of 40 (see Section 5).

Again, our measure is stable over large scales and even
permits the two arcs to be connected by some edges. It is
interesting to note that so many clustering validity indices
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ID BETACV C-INDEX WCS DUNN INDEX NC SILHOUETTE σGlobal

A 0.305 0.080 619.96 0.0099 4.76 0.35 0.141
B 0.0 0.221 1052.08 0.0064 1.52 0.35 0.373
C 0.0 0.279 1170.42 0.0182 1.35 0.27 0.328
D 0.897 0.436 1283.52 0.0637 2.39 −0.09 1.0

A B C D

Table 1: Different clusterings of the “nested circles” data. From the common clustering validity indices, only the Dunn index is
capable of finding the correct partition. Its value is unstable, though (Section 5).

(a) ε = 0.15 (b) ε = 0.20 (c) ε = 0.30 (d) ε = 0.50

Figure 1: Edge sets of the Rips graph Rε of the “nested circles” data set, for varying values of ε. Our heuristic (see the paper)
suggests using ε = 0.20, but we can see that there is still a lot of leeway in both directions for good values for ε.

ID BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

A 0.255 0.0559 499.96 0.008 4.80 0.456 0.034
B 0.0 0.1824 966.32 0.005 1.56 0.388 0.104
C 0.47 0.0858 856.01 0.011 1.62 0.499 0.069
D 0.559 0.1741 957.39 0.157 1.56 0.389 1.0

A B C D

Table 2: Different clusterings of the “nested arcs” data. For the perfect clustering, the Dunn index performs very well. In
Section 5, we will see that its value drops by a factor of 40 when we change the assignment of only three points.
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consider the first clustering, i.e. the ones with largest amount
of clusters, to be best. We feel that an index should rather
be biased towards fewer clusters because clusters should ex-
plain global as well as local aspects of a data set.

Very small clusters may fit the data locally very well, but
they often do not yield global information—as is the case for
clustering A of the “nested arcs” data.

3.3. Synthetic data: “Gaussian blobs”

Table 3 shows the results of several clustering validity in-
dices for the “Gaussian blobs” data. We argue that only clus-
terings B and D are “meaningful” in the sense that they prop-
erly express spatial proximity. Most validity indices tend to
favour clustering D.

Our measure is incapable of detecting differences between
clustering A, clustering B, and clustering D because the
blobs are well-separated. When approximating the con-
nectivity of our data using the Rips graph, as detailed in
the paper, our heuristic will never create edges that go from
one “blob” to another “blob”. Hence, our persistence-based
measure cannot detect any differences between different
splits of these three components.

For this data, our visualizations will be useful in showing
differences between clusterings A and B, for example: Both
the clustering similarity graph and the cluster map will show
that the clusterings differ significantly. This example also
stresses the importance of using suitable shape descriptor
functions.

3.4. Synthetic data: “Uniform distribution”

We also include a somewhat controversial data set consist-
ing of uniformly-distributed points inR2. Table 4 shows the
numerical results for several clustering validity indices. We
argue that only clustering D—which assigns all points to a
single cluster—is true to the structure of the data. If parts of
a data set are truly random, a clustering validity index should
not rate statistically arbitrary partitions to be suitable. As the
numerical results show, none of the existing clustering valid-
ity indices is capable of assessing data set D properly.

The definition of some of the indices does not permit us
to calculate them on a single partition. Even if we slightly
change the assignment of some points to a dummy cluster
and leave the majority of the points in a larger cluster, the
results do not change. In particular, all indices except for
BetaCV considers clustering A to be the most suitable.

3.5. Real-world data: “Iris”

As we state in the paper, we use the “Iris” data set as an
example because its clusters are already sufficiently challen-
ging. Since we have labels available, we can use them to

calculate the Rand index of the clustering. This number in-
dicates the percentage of correct cluster assignments made
by an algorithm. We calculated numerous clusterings of the
data set, including the correct label assignment.

Table 5 shows the results for k = 3, sorted by ascending
clustering quality. We can see that our measure is the only
one that is able to detect the correct clustering. We also note
that we are unable to retain all topological information. Pre-
cisely because the cluster boundaries are not well-defined,
we will invariably lose some information. Furthermore, the
table also shows that a second good candidate is given by
the clustering in the third row. It does not follow the original
cluster boundaries, though.

A similar behaviour is observable for the other clustering
indices as well. This again demonstrates the challenges with
the “Iris” data in particular and with clustering analysis in
general: If the original definition of the labels clashes with
the original definition of the features one is looking for, clus-
tering validity indices will not perform well. Our measure is
less prone to these issues because it looks for large-scale fea-
tures in the shapes of the different clusters.

3.6. Real-world data: “Olive oils”

We can perform the same analysis for the “Olive oils” data,
for k = 3 and k = 9. For both numbers of clusters, we calcu-
lated different partitions and sorted them according to their
Rand index, which indicates the percentage of correct cluster
assignments made by the algorithm.

Table 7 shows the results for k = 3 clusters. We note that
only the Dunn index and our measure are capable of detect-
ing the “best” clustering. Note that the Dunn index is again
very unstable—the clustering with a Rand index of 0.986,
which gets assigned σGlobal = 0.96 is rated even worse as
the clustering with a Rand index of 0.759.

For k = 9, the different clusterings become more similar
to each other. The boundaries of the “real” clusters do not
always follow the geometry of the data. Hence, our measure
is incapable of detecting the “correct” label assignment—
along with all other clustering validity indices. Table 8 shows
the results for all measures. We can see, however, that our
measure is consistent in its evaluation of the clusterings.
Starting from a Rand index of approximately 0.89, we con-
sider all clusterings to describe the data equally well. This
is where our visualizations, coupled with our σLocal measure
can be used to find out in what ways the clusterings differ.

These clusterings also illustrate a general problem
with clustering algorithms: With an increasing number of
clusters, it gets easier to find some reasonable structure in the
data. Hence, the Rand indices of different algorithms is more
or less similar. Getting the clustering algorithm to cluster the
last 10% of the data correctly cannot always be done—often,
this requires supervised clustering algorithms.
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ID BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

A 0.0 0.4360 295.94 0.08 1.476 0.2662 1.0
B 0.0 0.0019 127.79 0.92 1.787 0.8010 1.0
C 0.1530 0.1235 507.58 0 2.772 0.2795 0.66
D 0.1140 0.0013 61.84 0.29 2.914 0.8041 1.0

A B C D

Table 3: Different clusterings of the “Gaussian blobs” data. This data set has a very simple geometry and the individual clusters
are well-separated. Hence, almost all clustering indices are able to detect useful clusterings. Since the “blobs” are separated on a
large scale and do not contain any prominent topological features, our measure cannot discern between three of the clusterings.

ID BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

A 0.4234 0.079 669.55 0.0129 3.737 0.4132 0.64
B 0 0.222 1052.54 0.0020 1.514 0.3456 0.64
C 0 0.213 1045.64 0.0045 1.522 0.3527 0.66
D NaN 1.0 1354.86 NaN 0 NaN 1.0

A B C D

Table 4: Different clusterings of the “Uniform distribution” data. We argue that only clustering D is true to the structure in the
data. While the split in clustering A is uniform with respect to the cluster sizes, it is somewhat arbitrary. Note that σLocal of the
individual clusters will still be very high because they are good subsets of the data.

Rand index BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

0.741 0.267 0.154 117.64 0.048 2.648 0.349 0.356
0.743 0.263 0.151 104.97 0.052 2.677 0.367 0.809
0.821 0.251 0.098 94.40 0.090 2.712 0.429 0.949
0.824 0.215 0.110 98.94 0.041 2.705 0.415 0.790
0.825 0.233 0.091 93.07 0.098 2.721 0.446 0.842
0.828 0.385 0.089 90.60 0.026 2.733 0.458 0.857
0.857 0.394 0.092 90.95 0.058 2.731 0.450 0.861
1.0 0.419 0.118 97.23 0.074 2.710 0.380 0.967

Table 5: Clustering validity indices for several partitions of the “Iris” data set for k = 3 clusters. It is interesting to note that
most clustering validity indices do not exhibit better values as the Rand index increases.
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Rand index BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

0.803 0.363 0.106 83.76 0.059 3.740 0.370 0.895
0.814 0.244 0.102 92.14 0.059 3.720 0.257 0.695
0.823 0.266 0.083 81.76 0.034 3.765 0.412 0.603
0.828 0.263 0.084 82.35 0.105 3.763 0.399 0.697

Table 6: Clustering validity indices for several partitions of the “Iris” data set for k = 4 clusters. Since we only have k = 3 labels,
we cannot achieve a Rand index of 1.0 here. Our measure rates a refinement of a hierarchical clustering best. Note that there is
still a significant difference between the ratings for k = 3 and k = 4 for our measure. This does not hold for the other measures.
Most of the measures get better for k = 4. For higher values of k, the effects get even worse.

Rand index BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

0.695 0.429 0.195 771.91 0.0892 2.57 0.280 0.77
0.698 0.407 0.141 777.52 0.0476 2.57 0.307 0.82
0.720 0.360 0.154 769.35 0.0564 2.58 0.301 0.86
0.759 0.348 0.166 754.69 0.0873 2.59 0.314 0.88
0.825 0.361 0.133 761.47 0.0187 2.58 0.312 0.92
0.986 0.495 0.209 783.43 0.0809 2.55 0.251 0.96
1.0 0.476 0.197 778.26 0.1506 2.56 0.256 1.0

Table 7: Clustering validity indices for several partitions of the “Olive oils” data set with k = 3 clusters. Only two measures, the
Dunn index and ours, are capable of detecting the best clustering. For k = 3, the cluster boundaries follow the geometry very
well.

4. Limitations

We already alluded in the paper—and in the “Gaussian
blobs” example data—that our measure cannot distinguish
between clusterings where parts of a cluster are disconnected
on large scales. This implies that we cannot use our measure
to assess the similarity of clusterings. This limitation does
not imply, however, that we are biased with respect to the
number of clusters. To show this, we conducted a series of
experiments on data sets such as the one shown in Table 9.
We varied the number of circles between 2–100, and per-
turbed their coordinates.

We can see that our measure considers clusterings where
“nearby” circles are in a different cluster, such as cluster-
ing B, in a similar manner than clusterings where “nearby”
circles are in wholly different clusters, such as clustering D.

In practice, this means that when calculating clusterings
for different values of k, our measure does not necessarily
decrease with an increasing number of clusters. In our exper-
iments, the σGlobal changes only in the decimal place of mag-
nitude around 10−4, meaning that the difference between a
single cluster with σGlobal = 1.0 and k clusters for k linked
circles is of the order of 10−4 and thus negligible.
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Rand index BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

0.820 0.413 0.162 704.55 0.0719 8.64 0.112 0.86
0.890 0.410 0.082 507.51 0.0670 8.75 0.288 0.99
0.908 0.405 0.062 545.15 0.0871 9.72 0.303 0.97
0.915 0.444 0.096 513.32 0.0392 8.74 0.287 0.97
0.917 0.414 0.055 508.05 0.1184 8.75 0.331 0.99
0.921 0.366 0.051 507.00 0.1016 8.75 0.332 0.98
0.929 0.363 0.071 553.97 0.1090 8.72 0.203 0.97
1.0 0.406 0.075 10153.30 0.0827 8.75 0.320 0.97

Table 8: Clustering validity indices for several partitions of the “Olive oils” data set with k = 9 clusters. No measure is capable
of detecting the correct label assignment. Our measure assesses almost all partitions with a high Rand index similarly. This is
caused by very small clusters that do not contribute any geometrical-topological information.

ID BETACV C-INDEX W DUNN INDEX NC SILHOUETTE σGlobal

A NaN 1.0 190.75 NaN 0.0 NaN 1.0
B 0.0 0.56 178.64 0.0059 1.34 0.036 0.9999
C 0.85 0.43 175.50 0.0043 1.40 0.139 0.8091
D 0.40 0.09 95.62 0.0591 2.72 0.379 0.9997

A B C D

Table 9: An excerpt of a series of experiments with a data set of “linked circles”. This sort of data poses no significant challenge
for most clustering algorithms. We can see that the values of our measure barely differ for clustering A, clustering B, and
clustering D. We thus consider all of these splits to be equally valid.
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Measure A B
BETACV 0.897 0.901
C-INDEX 0.436 0.437
WCS 1283.52 1285.31
DUNN INDEX 0.0637 0.0123
NC 2.39 1.39
SILHOUETTE -0.09 0.11
σGlobal 1.00 0.997

A B

Table 10: Stability behaviour for the validity measures on the
“nested circles” data.

5. Stability

As the previous tables indicate, the clustering validity in-
dices are not stable with respect to their assessment of a
clustering. The re-assignment of a small number of points
may result in large changes in the measure.

Our measure is not prone to these instabilities. We show
this for two of the example data sets only—however, we ob-
served this in all of the data sets that we were working with.

As an experiment, we slightly modified the perfect clus-
terings of the synthetic data sets to show the effects of noise
in the data: We randomly changed the assignment of a frac-
tion of the points in the data set. We were somewhat sur-
prised by the results: Even if less than 0.5% of the points are
being assigned incorrectly, most clustering validity indices
changed drastically.

5.1. Synthetic data: “Nested circles”

Table 10 shows one example result for the “nested circles”
data. When we add more noise to the data set, our
persistence-based measure remains stable at approximately
99% of explained topological variation. The Dunn index—
previously capable of determining that the given clustering
was suitable—drops to around 20% of its previous value.
Similarly, the silhouette coefficient changes by 0.2, which is
a shift of 10% of its value range. The remaining indices re-
main somewhat stable but are still incapable of determining
this to be a suitable clustering.

5.2. Synthetic data: “Nested arcs”

Table 11 shows one example result for the “nested arcs”
data. Again, our measure remains stable and changes only
by 0.7% of its value range. Again, the Dunn index changes
drastically by dropping to only 3% of its previous value. The
remaining indices also exhibit some instabilities.

Measure A B
BETACV 0.559 0.557
C-INDEX 0.1741 0.1713
WCS 957.39 954.22
DUNN INDEX 0.157 0.0042
NC 1.563 1.1565
SILHOUETTE 0.389 0.3923
σGlobal 1.0 0.993

A B

Table 11: Stability behaviour for the validity measures on the
“nested arcs” data.
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