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Abstract
High-dimensional data sets are a prevalent occurrence in many application domains. This data is commonly
visualized using dimensionality reduction (DR) methods. DR methods provide e.g. a two-dimensional embedding
of the abstract data that retains relevant high-dimensional characteristics such as local distances between data
points. Since the amount of DR algorithms from which users may choose is steadily increasing, assessing their
quality becomes more and more important. We present a novel technique to quantify and compare the quality of
DR algorithms that is based on persistent homology. An inherent beneficial property of persistent homology is its
robustness against noise which makes it well suited for real world data. Our pipeline informs about the best DR
technique for a given data set and chosen metric (e.g. preservation of local distances) and provides knowledge
about the local quality of an embedding, thereby helping users understand the shortcomings of the selected DR
method. The utility of our method is demonstrated using application data from multiple domains and a variety of
commonly used DR methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1. Introduction

Dimensionality reduction (DR) methods belong to the most
widely used possibilities to analyse and make sense of high-
dimensional data. In visualization, they are often used in in-
teractive frameworks that link multiple views on the data
via brushing [DH02] (see Fig. 1). This combined visual-
ization of physical space and parameter space enables the
user to identify structural anomalies in the parameter setting,
i.e. the multivariate simulation variables, and link them to
physical locations. Therefore, the general goal of DR meth-
ods is to retain characteristics such as clusters of the high-
dimensional point cloud and reflect them in the lower di-
mensional representation. Depending on the structure of the
input data and the analysis goal, a large variety of methods
have been proposed that use very diverse approaches to ob-
tain the low-dimensional representation [LV07]. The com-
mon theme of all techniques is to reduce the number of re-
dundant variables drastically.

Despite the large volume of existing techniques, DR is
still an active field of research and the set of available meth-
ods is ever-increasing to better capture predefined charac-
teristics of the high-dimensional data. However, while this
helps users better represent their data, it also makes select-
ing an adequate technique more complex. When faced with

the task of performing exploratory data analysis on a sci-
entific data set with unknown ground truth, users are likely
to be overwhelmed by having to choose among so many
DR methods. Even if a choice has been made, how can
we help users gain trust in the results of a particular algo-
rithm? This requires the implementation of verifiable tech-
niques and visualizations, as has been expressed by Kirby
and Silva [KS08]. Isenberg et al. [IIC∗13] review advances
in this direction and define seven categories for evaluation,
ranging from user-centric analysis to fully-automated perfor-
mance analysis. Our work falls in the category of algorith-
mic performance that quantitatively studies the quality of a
visualization algorithm.

To achieve this goal, we present an evaluation scheme for
DR algorithms based on persistent homology, an algorithm
from computational topology. Computational topology ex-
amines invariants within data, i.e. relevant structures in a
global context, thereby reducing the influence of individ-
ual data points. We use this methodology to robustly anal-
yse the quality of DR algorithms by comparing properties
of the high-dimensional point cloud, e.g. its local density, to
respective properties in its embedding.

This combination of local error quantification and global
error control allows us to fulfill two tasks: (i) We can rec-
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Figure 1: Interactive visualization with linking+brushing:
Linked views of physical domain and parameter space en-
able users to inspect data in different reference frames.

ommend DR techniques for a given data set that best retain
a given quality property. (ii) We provide a visual interface
for exploring error distributions in the projected data. This
information tells the user which parts of an embedding are
faithful and which parts introduce large errors. Our contri-
butions are:

• We propose a novel framework that is highly flexible and
robust against noise in the data. The system makes only
mild demands on the data and gives results on a global
and local scale.
• The framework permits the integration of a large variety

of quality functions. This allows for the faithful compar-
ison of many different DR methods as it does not favour
any particular technique.
• We show application-relevant results using the conserva-

tion of local density as quality measure.

2. Related work

DR methods: Principal component analysis (PCA) and
multidimensional scaling (MDS) have both seen extensive
use over the years [BG05,Jol02]. Tenenbaum et al. [TdSL00]
showed that by approximating geodesic distances in a data
set, non-linear dimensionality reduction methods such as
Isomap may outperform linear DR methods such as PCA,
provided data lies on a lower-dimensional manifold within
the ambient space. For data sets that contain manifolds at
different scales, van der Maaten and Hinton [vdMH08] de-
veloped the t-SNE algorithm. Faced with large data sets and
prohibitively long computation times, Agrafiotis [Agr03]

presented stochastic proximity embedding (SPE). In a sim-
ilar vein, Baraniuk and Wakin [BW09] used the Johnson-
Lindenstrauss lemma [JL84] to develop random projec-
tions (RP), a very fast algorithm that projects data points
using a random projection matrix.

DR evaluation: Evaluating DR methods remains an active
research topic. A study by Lewis et al. [LvdMdS12] indi-
cates that non-experts generally disagree when judging the
quality of DR methods. This justifies the need for quantifi-
able quality metrics. van der Maaten et al. [vdMPvdH09]
compared numerous DR methods and concluded that PCA
is a sensible first choice for real-world data sets. Sips et
al. [SNLH09] used labelled data to judge how well a DR
method maintains class consistency. In practice, many data
sets do not exhibit well-defined classes, making these ap-
proaches not suitable for a general comparison. Sedlmair et
al. [SBIM12] identified key requirements for users of DR
techniques, showing that analysts want DR methods to show
them either the most salient dimensions of a data set or an
approximation to its density. Tatu et al. [TBB∗10] also con-
cluded that users tend to be interested in density variations
of a data set. These two publications motivated our use of
density functions to evaluate DR methods. The needs of an-
alysts also prompted the development of frameworks for ex-
ploratory data analysis using DR methods. These frame-
works can either be automated [TAE∗09], or more user-
centric [FSJ13, IMI∗10, SMT13]. A systematic and concise
overview of different quality measures for high-dimensional
data visualization is given by Bertini et al. [BTK11].

Persistent homology: Persistent homology, the technique
used by our method, has already been used to comple-
ment standard data analysis methods. Singh et al. [SMC07]
showed the importance of studying the behaviour of a given
function on the data. Carlsson [Car14] refers to this as func-
tional persistence. Sheehy [She14] recently proved that the
topological features of distance functions remain stable un-
der projections, implying that the study of functions (and
their connectivities) on a data set contains salient informa-
tion.

3. Method

In the following, we explain the required concepts behind
our method. A more concise introduction to persistent ho-
mology is provided by Edelsbrunner and Harer [EH10].

3.1. Persistent homology

Persistent homology is an algorithm from computational
topology that summarizes a data set by its topological fea-
tures. Such features comprise, for example, connected com-
ponents (dimension 0), tunnels (dimension 1), and voids (di-
mension 2). In general, persistent homology focuses on con-
nectivity information of a data set by observing the connec-
tivity changes of certain scalar functions on the data, such as
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Figure 2: Persistent homology of 1D data: The persistence
diagram (top right) summarizes the connectivity changes of
a real-valued function (top left). The highlighted point cor-
responds to the connected component that lives in the range
y ∈ [c,d]. Bottom: Matching between the function shown
at the top and a noisy version of the same function. The
four large-scale features are present in both versions (and
mapped onto each other), while noise can be ignored easily.

a density. As an example, we will first assume that our data
are the function values of a 1-dimensional function over the
set of real numbers R. We will then extend this example to
scalar functions on high-dimensional data sets.

The 1-dimensional case: Given discrete samples of a scalar
function f : D ⊆ R→ R, we want to describe the connec-
tivity changes in the sublevel sets of f . These are sets of the
form L−c ( f ,c) = {x | f (x) ≤ c}. Starting from the small-
est function value, we now successively analyse how con-
nected components change when we increase the function
value. We observe that the number of connected components
only changes when a local extremum is reached (Fig. 2, top
left). At a local minimum, a new connected component ap-
pears in the data set. At a local maximum, however, two
connected components are merged into one. We now sweep
through the function values {y0,y1, . . .} and keep track of
the individual function values at which components appear
or disappear. At each local minimum, we can thus assign the
new connected component a creation value ci = yi ∈ R. At
each local maximum, we have two connected components
with creation values c and c′. Without loss of generality, let
us assume that c′ ≤ c. We shall call the connected compo-
nent corresponding to c the “younger” component because
it has been created after the other component. We merge the
younger component into the older component and store this
event as the tuple (c,d), where d refers to the function value
of the local maximum. The merge must be performed in this

manner in order to remain consistent with the ordering of
connected components [EH10, p. 150]. As a result of this
sweep through the function values, we now have a set of
tuples that summarize the connectivity changes of the con-
nected components of f . Since the first connected compo-
nent, i.e. the one created at the smallest function value, can-
not be merged with another component (as there are no other
connected components remaining), we customarily assign it
a destruction value of d =∞. By treating each pair as a point
inR2, we obtain a diagram in the plane—the persistence di-
agram. The first connected component with d =∞ is often
ignored when drawing the diagram. Fig. 2, top, shows how
to obtain a persistence diagram for samples from a smooth
function. Each point in the persistence diagram corresponds
to the lifetime of a connected component of the function.

High-dimensional data: For high-dimensional data sets,
the calculation is slightly more involved than in the 1-
dimensional case. We first require a metric or a similarity
measure d(·, ·), such as the Euclidean distance, to calculate
distances on the data set. Given a distance threshold ε, we
then calculate the Rips graph Rε of the data set. For a data
set with n points,Rε has a vertex set of V = {0,1, . . . ,n−1}
and an edge set of E = {(u,v) ∈ V ×V | d(u,v) ≤ ε}, i.e.
two vertices u and v are connected if and only if their dis-
tance is less than or equal to the selected distance thresh-
old. The distance threshold ε controls the approximation of
connectivity in a data set. If ε is too small, Rε will con-
sist of many isolated vertices. If ε is too large, however, the
graph will be the complete graph on n vertices, making fur-
ther calculations very cumbersome. Thus, there is no single
“correct” value for choosing ε. In practice, several heuristics
have proved to be effective. Previously, we [RML12] used
estimates of the local distance between neighbouring points
for choosing ε. Correa and Lindstrom [CL11] propose us-
ing a large threshold and subsequent edge pruning for Rε.
Chazal et al. [CGOS11], on the other hand, suggest calculat-
ing dendrograms and using their edge length distributions.

Having selected a distance threshold ε and obtained the
corresponding Rips graph Rε, we now require a func-
tion f : V → R that assigns each vertex a scalar value,
such as a density estimator or a DR quality measure (see
Sec. 3.3). After assigning each vertex v its corresponding
weight f (v), each edge (u,v) in Rε is assigned a weight of
max{ f (u), f (v)}. This weight indicates that when travers-
ing the function values, an edge occurs only after both of its
vertices occur in the graph.

We proceed to sort vertices and edges by their respec-
tive weights, giving vertices precedence before edges if their
weight coincides. Afterwards, we traverse the sorted graph,
keeping track of its connected components using a union-
find data structure [CLRS09, pp. 561–568]. Similar to the
1-dimensional case, each vertex v of Rε creates a new
connected component, while each edge (u,v) results in the
merge of two connected components. Again, when merging
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two connected components with function values c′ ≤ c, we
merge the “younger” component, c, into the older compo-
nent, c′. This process results again in a persistence diagram
of the function f on our high-dimensional data set.

3.2. Comparing persistence diagrams

Persistence diagrams are an appealing summary of functions
because there are two well-defined, stable metrics for com-
paring them. The first one is the bottleneck distance. Given
two diagrams X and Y , corresponding to functions f and g,
their bottleneck distance is defined as

W∞(X ,Y ) = inf
η : X→Y

sup
x∈X
‖x−η(x)‖∞, (1)

where η : X→Y denotes a bijection and ‖x−y‖∞ the max-
imum norm. The distance between X and Y is thus the small-
est supremum over all bijections. Since X and Y do not nec-
essarily have the same cardinality, we also permit that a point
in any of the persistence diagrams may be mapped to its or-
thogonal projection onto the diagonal. The bottleneck dis-
tance is very stable against perturbations of the data set. A
stability theorem of Cohen-Steiner et al. [CSEH07] implies

W∞(X ,Y )≤ ‖ f −g‖∞. (2)

The bottleneck distance is thus bounded from above by the
Hausdorff distance between the two functions f and g, mak-
ing it very stable and robust against noise. Functions that
are considered similar by the Hausdorff metric will have a
small bottleneck distance. Fig. 2, bottom, illustrates the bot-
tleneck distance calculation for two persistence diagrams:
The grey function describes a perturbed version of the origi-
nal function. We can see that its large-scale topological fea-
tures, namely the four pairs of maxima and minima, are well-
retained. Due to the noise, many spurious points appear in
the corresponding persistence diagram. These are not part
of the optimal bijection and are instead matched to their or-
thogonal projections on the diagonal.

In practice, the bottleneck distance turns out to be very
coarse. We thus calculate a relaxed version, the qth Wasser-
stein distance, between two diagrams X and Y , which is de-
fined as

Wq(X ,Y ) = q

√√√√( inf
η : X→Y ∑

x∈X
‖x−η(x)‖q

∞

)
, (3)

where η : X→Y again denotes a bijection between X and Y .
For the qth Wasserstein distance, another stability theorem
by Cohen-Steiner et al. [CSEHM10] states that

Wq(X ,Y )≤C · ‖ f −g‖
1− k

q
∞ , (4)

for constants k and C that depend on f and g as well as on
its domain. The stability theorem requires both f and g to be
Lipschitz continuous, which motivated our choice of density

estimator (see Sec. 3.4). We will subsequently use q = 2 be-
cause its local costs are calculated using the Euclidean dis-
tance. Both the Wasserstein and the bottleneck distance may
be obtained using maximum weighted matchings in bipartite
graphs [EH10, pp. 229–236].

3.3. Choosing a scalar function

Our method requires a scalar function f whose behaviour on
the original data is compared with the behaviour on the em-
bedded data. This approach is related to the shape descrip-
tor method by Biasotti [BdFF∗08] who suggest using real
functions for shape description. There are numerous suitable
choices for f . Carlsson [Car14] proposes using centrality
functions that judge how much a point is removed from a
hypothetical centre of a point cloud. Cerri et al. [CDFJM14]
show that the heat kernel signature and the integral geodesic
distance both carry salient information about multivariate
point clouds. Singh et al. [SMC07] reported successful re-
sults with eccentricity functions, graph Laplacians, and den-
sity functions (similar to the one we are using). As detailed
in Sec. 2, we use a local density function in the current anal-
ysis because structure preservation, which local point den-
sity is able to quantify well, is a common goal in DR. Our
framework allows for easy integration of any other quality
measure with a well-defined distance.

3.4. Implementation

Obtaining global and local quality information about a DR
method requires six steps:

Step 1: First, we compute the local connectivity of the high-
dimensional point cloud using a Rips graph Rε. To obtain
Rε for our high-dimensional data set D, we choose a dis-
tance threshold ε with the help of one of the heuristics de-
scribed above. Rε serves as an approximation of the con-
nectivity of the data set and is used to calculate persistence
diagrams for different functions on the point set.

Step 2: Using a set of DR methods, we then proceed to cal-
culate embeddings of D in 2D, yielding {DPCA,Dt-SNE, . . .}.
Embeddings may also occur multiple times with different
parameter settings. We use the Tapkee library [LWG13] for
easy-to-use implementations of all common DR methods.

Step 3: On each of these embeddings (and on D), we calcu-
late the density and standardize its values by scaling the em-
beddings to the same area. We use the distance to a measure

density estimator [CCSM11], f (x) =−1/k
√

∑
k
i=1 d2(x,ni),

where k refers to the number of nearest neighbours and
d(x,ni) denotes the Euclidean distance of the ith neighbour
to the query point. As suggested by Chazal et al. [CGOS11],
we use k ∈ [10,20] in order to ensure that the values are
smooth. This density estimator represents a smoothed ver-
sion of the distance function of a data set; it has excellent
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stability properties and is Lipschitz continuous, thus per-
mitting us to use the Wasserstein distance for quality anal-
ysis. The density calculations result in a set of functions
{ fOriginal, fPCA, ft-SNE, . . .}.

Step 4: We then assign each function f , including the orig-
inal density estimates on D, to Rε: Each vertex v of Rε is
assigned the value f (v), and each edge (u,v) is assigned
the value max{ f (u), f (v)}. We will refer to the resulting
Rips graph as Rε( f ) to indicate that the graph has been
assigned the function values of f . For each of the graphs
Rε(·), we calculate its persistent homology, as outlined
above. This calculation results in a set of persistence dia-
grams {POriginal,PPCA,Pt-SNE, . . .}.

Step 5: The global quality of each embedding is obtained
by computing the 2nd Wasserstein distance between the two
persistence diagrams POriginal and PDR. The distance quanti-
fies how faithfully f is preserved by the corresponding em-
bedding.

Step 6: For a local quality analysis, we investigate how well
f is preserved at individual points. To this end, we propagate
the information from the graph matching algorithm (Step
5) to the individual points: Each point in a persistence di-
agram represents a connected component at a certain scale.
When two connected components are being matched by the
Wasserstein distance calculations, we want to assign each of
their vertices the matching cost—this cost represents the er-
ror that is being introduced by the corresponding embedding
algorithm. We thus need to extract the connected component
that is represented by a given point in the persistence dia-
gram. Given a point x = (c,d) in e.g. PPCA that is matched
with another point y = (c′,d′) in POriginal, we extract all ver-
tices and edges fromRε( fPCA) whose weight is less than or
equal to d. We then calculate the connected component that
corresponds to the point (c,d) by looking up which vertex
created it. This results in a subset V ′ ⊆ V of vertices of the
Rips graph. We now assign each vertex v′ ∈V ′ the matching
cost of ‖x−y‖2

∞, keeping track of multiple cost assignments
for the same vertex in a list. Since each vertex is guaranteed
to appear in at least one connected component, this proce-
dure will assign every vertex at least one cost value. We use
the mean cost of each vertex for local error analysis.

4. Analysis pipeline

In the following, we assume that we are given a high-
dimensional data set D from Rd , a set of dimensionality re-
duction methods, and a function f : D→ R. Subsequently,
we will use the distance to measure estimator of the lo-
cal density as our scalar function f . We detail the analy-
sis pipeline using common synthetic data sets with known
ground truth. We will demonstrate that the density estima-
tor results in salient properties of a data set to be conserved
upon embedding—even in the presence of noise.
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Figure 3: Global quality of the Swiss Hole dataset: The orig-
inal data in 3D (top left) is located on a curled-up plane with
a hole. The central quality chart relates the global quality
ratings for the five depicted embeddings.

Global quality information: We start the analysis with a
comparison of multiple DR schemes. Fig. 3 shows the Swiss
Hole data and five embeddings that were obtained from dif-
ferent DR schemes. The original 3D data is located on a
curled-up plane with a hole. We used the same colours for
the data sets to allow for easy manual inspection. The per-
fect embedding would unroll this data and feature a rainbow
colour map. As can be seen in the five embeddings, some
algorithms are capable of fulfilling this task well (HLLE,
t-SNE, and Isomap), while others project locally disjoint
data on top of each other (PCA and SPE). We sorted the
embeddings manually based on perceived quality.

The quality chart (Fig. 3, centre) shows the global ranking
of the embeddings, obtained from our algorithm. The origin
is on the left and longer distances indicate worse approx-
imations of the quality function (local density). Here, the
algorithm with the highest rating is HLLE, which follows
our intuition. t-SNE and Isomap are ranked second-best as
they retain the general shape, but distort the hole in the data.
The linear embeddings computed with PCA and RP have
medium quality as they cannot uncover the internal struc-
ture of the data. This alters the local densities and results in
a poorer rating. SPE is rated worst due to the inability to un-
roll the structure and the additional strong local distortions.
In contrast to the PCA embedding, this embedding makes it
very difficult to reconstruct the three-dimensional structure,
which justifies the poor rating.

Local quality information: If we compare these results
with the highly-similar Swiss Roll data set (Swiss Hole
without the hole), we see that the results are very differ-
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Figure 4: Quality and stability analysis of the Swiss Roll
data: The upper section contains three selected embeddings.
The middle section shows their local quality values. The
lower section indicates the stability of the global quality val-
ues under perturbations.

ent (Fig. 4). Here, Isomap perfectly unrolls the data and per-
forms best (Fig. 4a). HLLE, the best DR method for Swiss
Hole, results in a folded plane and is assigned a poor rat-
ing accordingly. PCA exhibits a similar behaviour; its rating
hence matches our intuition.

To get a better understanding of the rating, we now in-
vestigate the local error distribution. Histograms of the local
density estimates (Fig. 5) turn out to be insufficient to judge
local quality—the distributions of densities in both Isomap
and PCA look very similar, even though only Isomap em-
beds the Swiss Roll properly. In a similar vein, colour-coding
the point-wise differences between the density in the original
data and the embedding on the scatterplot is too noisy and
results in no discernible patterns. Using the error propaga-
tion method described in Sec. 3.4 (Step 6), we obtain a more
robust error visualization that compares the large-scale fea-
tures in the data. We thus use the topological differences be-
tween the density function on the data and the density func-

Estimator

Original PCAIsomap

0.4

0.2

0
-6 -4 -2 0 2 -6 -4 -2 0 2 -6 -4 -2 0 2

Figure 5: The limits of analysing quality estimators on data
sets: At first glance, both PCA and Isomap seem to approxi-
mate the original data set (the Swiss Roll) rather well. Our
analysis, however, shows that the PCA contains severe over-
plotting.

tion on the embedding. These differences are colour-coded
in the scatterplot visualization of the embedding (Fig. 4d–
f). Blue indicates a faithful embedding (high quality), while
red (low quality) highlights strong distortions in the local
density.

In the embeddings of the Swiss Roll, we can see
that Isomap (Fig. 4a,d) does not perturb the local den-
sity of the data except for some points on the boundary.
t-SNE (Fig. 4b,e) does not preserve the global shape of the
data, which is a connected plane, but each group of points is
preserved quite well. Thus, using the local distortion mea-
sure t-SNE is ranked almost as well as Isomap, although
more points of medium and low quality occur in the lo-
cal quality scatterplot. PCA (Fig. 4c,f), on the other hand,
changes the data especially by overlaps in the projection.
This is indicated by many points of low and medium quality
as well as a lower global quality ranking.

5. Robustness and performance

The goal of our method is to reliably quantify the quality
of DR schemes. We thus evaluate robustness in different
scenarios (noise, parameter stability) and briefly outline the
overall performance of our algorithm.

Stability under noise: The global quality values calculated
by our method are stable with respect to noise in the data set,
i.e. we do not expect them to vary much if point positions
change only slightly. To demonstrate this, we randomly jit-
ter all points in the Swiss Roll data set. For each point, we
choose a new direction vector from a uniform distribution
and a new displacement scalar from a Gaussian distribution.
We use multiple Gaussian distributions whose variance is a
percentage (10%, 20%, 30%) of the average inter-point dis-
tance in the data. Each point is then displaced by the selected
amount. This simulates the small-scale effects of noise be-
cause points are being distorted locally, but the overall struc-
ture of the Swiss Roll is preserved. Fig. 4, bottom, shows a
box plot of the global quality values. We can see that with in-
creasing noise levels, all three DR methods exhibit a larger
spread in values, but retain their relative order. The global
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Figure 6: Errors of density estimates.

quality values of t-SNE exhibit much more variation. This is
owed to the stochastic nature of the algorithm. For Isomap,
this effect is less pronounced. PCA becomes better at pre-
serving the density with higher noise levels because different
parts of the Swiss Roll tend to move away from each other.

Parameter stability: The Rips graph Rε and persistent
homology are known to be stable with respect to small
changes in the ε parameter [CSEH07]. We thus only need
to check the stability of the distance to measure density
estimator. To experimentally verify the theoretical stability
properties [CCSM11], we calculated point-wise densities for
k ∈ [10,20] on the Swiss Roll. This results in 10 different
density estimates per point. We then assign each point the
maximum difference between its density estimates and plot
the corresponding distribution. Ideally, the density estimates
would not vary much, yielding a large peak near zero, with
a sharp decrease for larger values. The histogram in Fig. 6
shows a similar behaviour, with the majority of values ly-
ing in [0,1]. This is well below the average inter-point dis-
tance of approximately 3.96, which means that the density
estimates only vary within small neighbourhoods, even over
larger ranges for k—the estimates are hence very stable.

Performance: We performed all analyses on an Intel i7
960 machine with 8 GiB RAM. Our implementation cur-
rently uses only a single core. To extract a Rips graph, we
use approximate nearest neighbour methods with a worst-
case time complexity of O(n logn) for a data set with
n points. The calculation of the connected components takes
almost linear time, with a worst-case complexity of O(n ·
α(n)), where α(n) is less than 5 for all practical values of
n [CLRS09, pp. 573–586]. The Wasserstein distance, on the
other hand, has a worst-case complexity of O(m3), where
m is the number of points in the largest persistence diagram.
Currently, the time spent for calculating this is negligible be-
cause of the small sizes of the persistence diagrams involved
in our analysis. For example, calculating the Wasserstein dis-
tances for the climate data set (Sec. 6.3) with n = 1000 data
points, takes roughly 0.02s per embedding, while the embed-
dings take between 0.39s–9.80s (17s in total). Calculating
the Rips graph takes approximately 1s, while each persis-
tence diagram is calculated in 0.4–0.6s (4s in total). Thus,
the largest amount of time in our implementation is being
spent for calculating the embeddings of high-dimensional
data. For larger data sets the Wasserstein distance can be-

t-SNE 1.73 RP 3.44

2.5 MDS
 

PCA 3.63
6.89 SPE

 

Figure 7: Quality for the compressive strength data: MDS
and t-SNE have very small global errors. RP keeps linear
structures in the data intact (such that it resembles the MDS
embedding), but tends to distort the function values. SPE,
on the other hand, is unable to extract meaningful structures
from the data.

come computationally prohibitive, requiring the use of ap-
proximative graph matching algorithms.

6. Results

In the following, we apply our method to data sets from three
application domains and concentrate on different analysis
aspects. The concrete compressive strength data features in-
teresting well-known structures in high-dimensional space
that need to be retained by DR methods. The “Isomap faces”
data set is well-suited for a parameter study of Isomap. The
final example comes from climate research, where we anal-
yse the performance of persistent homology when applied to
challenging, large-scale scientific datasets.

6.1. Concrete compressive strength

This data set was originally described by Yeh [Yeh98] in the
context of performing a parameter study of the compressive
strength of concrete for different cement mixtures. The data
consists of 1030 different concrete mixtures, described by
eight continuous input variables. We are interested in see-
ing which DR methods are depicting groups and substruc-
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tures most faithfully. This is motivated by a previous analy-
sis [GBPW10] which showed that the parameter space con-
tains numerous linear substructures, making it amenable to
regression analysis.

The global quality indicates that t-SNE and MDS are
among the best-performing DR methods on the compressive
strength data set (Fig. 7). t-SNE preserves the density func-
tion globally even better than MDS. To this end, t-SNE par-
titions the parameter space into smaller groups of concrete
mixtures that are similar to each other with respect to their
composition. This process cannot preserve the density glob-
ally, though. The distribution of errors is shown in our visu-
alization of the local quality (Fig. 7, top left). t-SNE suggests
a rather uniform composition of different mixtures, which
does not always seem to be the case—hence, the red regions
in the scatterplot. Furthermore, t-SNE does not preserve the
linear structures in the parameter space. MDS (Fig. 7, bot-
tom left) depicts these structures better, although it does not
preserve the density function quite as well as t-SNE. In the
local quality visualization for MDS, we can also see that the
density of most of the linear structures is not represented
correctly in the embedding, which might be misleading for
cluster analysis.

Other DR methods performed worse on these data. RP
turned out to yield very inconsistent results. Fig. 7, top right,
shows only one example of medium quality in which RP de-
picts the linear structures properly. In general, this algorithm
also resulted in larger errors (5.68–7.89). The local quality
visualization indicates that denser parts in the projection are
misrepresented by the algorithm. One should thus exercise
caution when using stochastic DR methods—multiple runs
are necessary to confirm that an embedding is not an artefact.
We observed similar consistently bad results for SPE (Fig. 7,
bottom right). It was unable to preserve the density function,
despite parameter tuning.

6.2. Faces

The “Isomap faces” data set is a well-known data set in
non-linear dimensionality reduction [TdSL00]. It contains
698 images (64× 64 pixels each) depicting a 3D model
of a human head. The images are known to lie on an in-
trinsically three-dimensional manifold, parametrized by two
pose variables and one lighting variable. A suitable embed-
ding scheme should thus result in an embedding whose axes
roughly represent these variables (or a combination thereof).

Tenenbaum et al. [TdSL00] originally used the images to
show that the output of the Isomap algorithm is preferable
to MDS because Isomap can preserve geodesic distances.
Fig. 8 depicts the global and local quality of different al-
gorithms on the data. Our embeddings (Fig. 8c–e) indicate
that Isomap is rather volatile with respect to the neighbour-
hood parameter k. We reproduced the embedding reported
by Tenenbaum et al. with k = 8, but our algorithm does

not consider it to be the best embedding. In the local qual-
ity visualization, we can see that neither one of the Isomap
embeddings preserves densities well in all regions. With in-
creasing values for k, Isomap embeddings become gradually
worse but start getting better after k = 14. This is caused
by Isomap degenerating to an MDS embedding for higher
values of k. Prior to that, the “bending” that occurs for in-
creasing k results in a distortion of local neighbourhoods.

The best-ranked method, MDS, shows a different be-
haviour. It exhibits systematic misrepresentations of density
in a bounded region of the data—the region consists of faces
that are only partially lit. Their higher density is thus an arte-
fact of the projection. The local errors for the remaining data
points are very low. t-SNE again partitions the data set into
smaller groups, but is unable to retain their density accu-
rately. It also changes the global structure of the data set—
there are no artificial “holes” in the parameter space; its den-
sity should be depicted as being more uniform because of the
way the data were created (uniform changes over all three
variables, without preferring one over the other).

6.3. Climate simulation data

Climate research, with a need for numerical simulations, is
one of the most common sources of large-scale multivari-
ate data sets. Using complex models with many variables
at increasingly fine resolutions, meteorologists aim to pre-
dict changes in world climate. We obtained a large multi-
variate data set from the German Climate Computing Cen-
tre (DKRZ). The data set covers a period of one year, a grid
with 192×96 different locations on Earth, and 6 continuous
variables: Air temperature, surface temperature, atmospheric
pressure at sea level, total precipitation, and wind velocity in
u and v direction. For the subsequent analysis, we will exem-
plarily use a random sample of 1000 points of the meteoro-
logical autumn season (Sep–Nov). This sampling was cho-
sen because the complete data is prohibitively large for some
DR methods. Climate data are challenging because they con-
tain no well-defined clusters in the parameter space. A suit-
able DR algorithm should be able to faithfully represent the
density to show whether there are, for example, more mea-
surements of a certain sort. Our analysis (Fig. 9) shows that
SPE (Fig. 9, top left) performs best on the data. Its global er-
ror is even slightly less than the global error of PCA (Fig. 9,
bottom left). The fact that PCA works well on unstructured
real-world data sets confirms observations of van der Maaten
et al. [vdMPvdH09].

The local quality visualization indicates that SPE slightly
misrepresents the density in the more dense region of the
projection. The global quality, however, shows that these er-
rors are rather small, as both SPE and PCA perform approx-
imately equally well. The embeddings produced by SPE and
PCA characterize the density of the original data quite well.
Since the data consists of seasonal measurements of autumn,
there are many measurements that describe the same climate,
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Figure 8: Analysis of the “Isomap faces” data set: The model on the left shows the structure of the data. We compare MDS,
and t-SNE, which we found to perform best, to Isomap with varying neighbourhood parameter k.

SPE 3.12

3.14 PCA RP 3.80

t-SNE 4.51

Figure 9: DR for climate data: SPE and PCA retain density
similarly well. RP performs slightly worse, while t-SNE is
unable to preserve density.

i.e. a similar point in the parameter space. Thus, there is a
large “core” of similar measurements which form a high-
density region in the parameter space. Outlying measure-
ments are placed at some distance to the core. Using these
sorts of projections, analysts can thus quickly see whether a
data set is more homogeneous in terms of the measurements
it contains or not. In contrast to SPE, the PCA embedding is
more compact and we can see that the density in the “core”
of the data set is misrepresented in a different manner. The

PCA embedding also contains a larger region of high quality.
Outlying measurements are again placed at some distance
from the core and exhibit larger errors.

RP (Fig. 9, bottom right) also yields consistently good re-
sults for the climate data. Its embeddings are not rated as
well as SPE or PCA, though. The local quality visualiza-
tion shows that a large region of the projection is only of
medium quality, meaning that densities are systematically
misrepresented here. Yet, the RP embedding similarly place
outlying points away from its “core”. The last embedding
of our analysis, t-SNE, did not perform as well on the cli-
mate data. t-SNE tries to group similar measurements to
each other—this works rather well at the local scale of the
data set, but t-SNE loses almost all density information in
the process. The local quality visualization shows that only
very few parts of the data are represented correctly with re-
spect to their density. The high global error value also shows
that this DR method cannot preserve the density at a global
scale. In contrast to the other methods, outlying points can-
not be recognized in the t-SNE embedding. The embedding
thus completely belies the fact that the data set is very ho-
mogeneous for the most part.

7. Conclusion

We presented an analysis framework for evaluation of DR
methods. Our framework indicates how well DR methods
retain a given quality property, such as the density of the
data. Using a local quality scatter plot, we also show users
regions of high and low quality in embeddings. This high-
lights parts of an embedding that are faithful with respect
to the quality measure. Our method makes use of persistent
homology and is very stable against noise such as perturba-
tions in the data. We analysed different data sets of varying
complexities and showed how to use both global and local
information to judge the quality of an embedding. For future
work, we envision using different neighbourhood graph im-
plementations [CL11] and examine their effects on the qual-
ity of the approximation. We also plan on experimenting
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with different distance metrics [LMZ∗14] and integrating
higher-dimensional topological features in the data [EH10].
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