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Abstract

Topological and geometrical methods constitute common tools for the analysis of high-dimensional scientific data
sets. Geometrical methods such as projection algorithms focus on preserving distances in the data set. Topolog-
ical methods such as contour trees, by contrast, focus on preserving structural and connectivity information. By
combining both types of methods, we want to benefit from their individual advantages. To this end, we describe an
algorithm that uses persistent homology to analyse the topology of a data set. Persistent homology identifies high-
dimensional holes in data sets, describing them as simplicial chains. We localize these chains using geometrical
information of the data set, which we obtain from geodesic distances on a neighbourhood graph. The localized
chains describe the structure of point clouds. We represent them using an interactive graph, in which each node
describes a single chain and its geometrical properties. This graph yields a more intuitive understanding of mul-
tivariate point clouds and simplifies comparisons of time-varying data. Our method focuses on detecting and
analysing inhomogeneous regions, i.e. holes, in a data set because these regions characterize data in a different
manner, thereby leading to new insights. We demonstrate the potential of our method on data sets from particle
physics, political science, and meteorology.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques E.1 [Data]: Data Structures—Graphs and networks

1. Introduction

Multivariate data analysis is a complex task. Projection
methods, for example, provide valuable assistance in identi-
fying structures in data sets. Higher dimensions often require
special algorithms for dimensionality reduction, such as
multidimensional scaling (MDS). The challenge with large
dimensions is readily apparent when different data sets from
the same source need to be compared. Given a set of experi-
mental measurement data, for example, an analyst might be
interested in finding out whether parts of a multi-run exper-
iment contain anomalies caused by faulty equipment. Simi-
lar issues occur when multivariate time-varying point clouds
need to be compared. Is it possible to detect whether two
high-dimensional point clouds exhibit the same characteris-
tics? How can differences be found and quantified? These
questions are especially relevant when an analyst is looking
for initially unknown patterns.

Aiming to support users in answering these questions,
topological methods have gained much momentum over

the last few years. In contrast to purely geometrical meth-
ods, topological algorithms focus on delivering a dimension-
independent structural description of multivariate point
clouds. Topological data analysis assumes that an input data
set has been sampled from an unknown manifold in a high-
dimensional space. This unknown manifold is then described
in terms of its invariants, i.e. characteristic features (such as
the genus of a surface in R3). Persistent homology is a pop-
ular method in topological data analysis that characterizes
data sets through a multi-scale description of their simpli-
cial homology: Each multi-scale feature detected by persis-
tent homology corresponds to a high-dimensional “hole” in
the data set. A “hole” can be considered an inhomogeneous
region containing few or no data points. The basic visualiza-
tions for persistent homology [ELZ02, Ghr08, RML12] es-
sentially count the number of holes in a data set. While this
helps in distinguishing data sets, these visualizations remain
very abstract and do not offer any links to the actual points
in the point cloud. Recently, the calculation of persistent ho-
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(a) Non-localized loops (b) Perfectly-localized loops

Figure 1: An idealized torus data set and its two loops in
dimension 1. The non-localized loops typically occur as the
results of the standard persistence calculation algorithm.

mology was modified to incorporate a more precise descrip-
tion of each “hole”. This description is obtained by calculat-
ing simplicial chains, i.e. subsets of points that are supposed
to be situated near the boundary of the detected hole. How-
ever, as persistent homology does not employ any geometri-
cal information, the insight offered by simplicial chains is al-
gebraically correct, but does not always correspond to a tan-
gible feature in the point cloud (see Fig. 1a). This oversight
can be rectified by employing geometrical information to lo-
calize the simplicial chains, which results in a very concise
description of the boundary of an inhomogeneous region in
the data set (see Fig. 1b).

Our method calculates the persistent homology of a data
set and uses geometrical information to arrive at a local-
ized description of simplicial chains. We then represent these
high-dimensional chains in a graph structure in order to
make them accessible for analysts. Through this process, we
can qualitatively describe a multivariate point cloud through
its inhomogeneous structures. Informally put, we focus on
things that are missing from a data set, which results in a
different characterization of multivariate point clouds. The
contributions of our paper are:

• We introduce simplicial chain graphs, a new visual
metaphor for the inhomogeneous topological structure of
a data set.
• We identify key properties of simplicial chain graphs and

demonstrate how these properties describe a data set.
• We analyse multiple data sets in order to explain how to

make use of the new visual metaphor. More precisely, we
show how localized topological information can support
data exploration using established methods for multivari-
ate data visualization.

2. Related work
There are two common classes of algorithms for exploring
multivariate point clouds. Algorithms of the first class aim
to identify relevant dimensions in the point cloud, while al-
gorithms of the second class project all dimensions to 2D
or 3D. Isomap [TdSL00] and projection pursuit [FT74] are
well-established algorithms of the first class. Typical repre-
sentatives of the second class are given by scatterplot matri-
ces [Mar09, pp. 238–239] and parallel coordinates [Mar09,
pp. 247–249]. Projections methods such as multidimensional

scaling [Mar09, pp. 242–245], principal component anal-
ysis [Mar09, pp. 226–234], and linear discriminant analy-
sis [Mar09, Chapter 2] are also employed very often.

A different approach for the analysis of multivariate point
clouds aims to describe their topological structure. Be-
cause topological methods depend on intrinsic properties
of a point cloud, they are less sensitive to the choice of
metrics [Car09]. Thus, the number of topological methods
increased over the past few years: Singh et al. [SMC07]
present the Mapper algorithm, which obtains a simplicial
complex from a data set via clustering algorithms. This com-
plex is then displayed as a graph. The generalized con-
tour tree introduced by Carr et al. [CSA02] is commonly
used for the analysis of high-dimensional scalar fields.
Duke et al. [DCK∗12] recently generalized contour trees and
Reeb graphs to obtain the joint contour net for the analysis
of multivariate data sets from nuclear science. Likewise, per-
sistent homology is often employed to analyse multivariate
data sets. Several visualizations for its topological structures
have already been suggested: Edelsbrunner et al. [ELZ02]
introduce a compact visualization, called the persistence di-
agram, to show topological attributes on multiple scales.
Ghrist [Ghr08] attempts to visualize the topological structure
in a more accessible way using persistence barcodes. Adams
and Carlsson [AC09] use persistent homology to identify
submanifolds in the space of range image patches. Rieck et
al. [RML12] demonstrate how to analyse general multivari-
ate data sets using persistence rings, a radial visualization
that balances compactness and accessibility.

Finally, there have also been efforts to incorporate geo-
metrical information with topological algorithms in order
to improve their results: Carr et al. [CSvdP10] show how
to store and compute various geometrical properties for the
contours of a contour tree. Erickson [Eri12] provides a de-
tailed outline of multiple low-dimensional localization tech-
niques for simplicial chains. Dey et al. [DLSCS08] introduce
an algorithm for localizing handle and tunnel loops in 3D
models. Erickson and Whittlesey [EW05] develop a graph-
based localization scheme for the fundamental group and the
first homology group of oriented 2-manifolds. Their work
can be used to describe optimal cuts for the simplification of
surfaces.

3. Mathematical background

In the following, we give brief accounts of the topolog-
ical methods used by our method. We refer the reader
to Hatcher [Hat02] and Munkres [Mun84] for a de-
tailed introduction to algebraic topology. Edelsbrunner and
Harer [EH10] give a comprehensive introduction to persis-
tent homology and topological data analysis.

3.1. Algebraic topology

The notion of a topological space, i.e. a subset of Rm

with some distance function, is a central concept in alge-
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Figure 2: Vietoris-Rips expansion procedure. From left
to right: ε-neighbourhoods, the Rips graph Rε, and the
Vietoris-Rips complex Vε.

braic topology. Topologists aim to identify invariants of such
spaces—properties that do not change when the space is
stretched, bent, and twisted by homeomorphisms. A com-
mon invariant is given by simplicial homology. It assigns a
set of algebraic groups, the homology groups, to an input
space. Each group-theoretic generator of a k-dimensional
homology group then describes a k-dimensional “hole” in
the space. In lower dimensions, these holes can be de-
scribed intuitively as connected components (dimension 0),
tunnels (dimension 1), and voids (dimension 2). A higher-
dimensional hole may be considered a part of a space where
a k-dimensional sphere can be attached.

The algebraic rank of a homology group in dimension k
is known as the kth Betti number bk [Mun84, p. 24] of a
topological space. Betti numbers are commonly used to dis-
tinguish different topological spaces from each other. For
example, a 2-sphere has a single connected component, no
tunnels, and encloses a void in R3. Its Betti numbers are
thus b0 = 1, b1 = 0, and b2 = 1 (the remaining bk are zero).
In contrast, a torus has a single connected component, two
loops (namely, one around its centre, the other around its
hollow tube—see Fig. 1b), and encloses a void in R3, as
well. Its Betti numbers thus are b0 = 1, b1 = 2, and b2 = 1
(again, the remaining bk are zero). Betti numbers can thus
discern a sphere and a torus from each other without requir-
ing any geometrical information about the space. This signa-
ture property of Betti numbers also applies to higher dimen-
sions, where distinguishing different spaces from each other
by purely geometrical means might not be possible.

Algebraic topology has multiple equivalent descriptions
for homology groups. From a computational point of view,
simplicial homology is the most appealing one because it
can be calculated algorithmically [Mun84, pp. 55–61]. The
homology calculation is a matrix reduction scheme. It re-
quires that the topological space is described as a simplicial
complex, i.e. a generalized graph structure for arbitrary di-
mensions. The generators of each homology group are rep-
resented as a formal sum of simplices, the simplicial chain.
Each simplicial chain describes a closed “path” (without a
boundary) in a simplicial complex, i.e. a path that constitutes

a hole in the complex. The chains in Fig. 1b, for example,
may be seen as a closed path of 1-simplices (i.e. edges).

3.2. Persistent homology

Since real-world data sets are usually not described by sim-
plicial complexes, their structure needs to be approximated.
A common approximation uses a distance measure d (such
as the Euclidean distance) and a scale parameter ε to ob-
tain the Rips graph (also known as neighbourhood graph)
Rε of the data set. Rε contains an edge between points x
and y iff d(x,y) ≤ ε. From Rε, the Vietoris-Rips complex
Vε [Vie27], a special simplicial complex, is obtained. Vε

contains a k-simplex iff Rε contains all of its edges (see
Fig. 2). It would now be possible to calculate the Betti num-
bers of the data set from Vε, but the numbers turn out to be
very sensitive to noise and the scale parameter ε. Even slight
variations for ε might result in a different set of homology
groups being assigned to the data set. In their seminal pa-
per, Edelsbrunner et al. [ELZ02] show how these instabili-
ties can be amended: Their persistent homology algorithm
calculates Betti numbers for a range of different values for
ε. To this end, simplices in Vε are partitioned into positive
and negative simplices. A positive simplex creates a topo-
logical feature (i.e. a k-dimensional hole), while a negative
simplex destroys one. Persistent homology thus speaks of
creator and destroyer simplices. The weight of each simplex
(for example, the value of ε for which it appears in Vε) is now
used to assign each topological feature a value from [0,∞].
This value is called the persistence of the hole. Holes with
a large persistence are considered to be important, while a
small persistence value often indicates (topological) noise.
The homology classes of Vε, i.e. topological features that
are not destroyed in Vε, are assigned a persistence value of
∞. There are multiple methods for assigning a weight to
each simplex, for example to emphasize certain structures in
a data set (see Singh et al. [SMC07] for an overview). In this
paper, we use the standard distance filtration. Here, each 0-
simplex is assigned a weight of 0 and each 1-simplex (u,v)
a weight of d(u,v), i.e. the distance between points u and v.

Recently, Zomorodian and Carlsson [ZC08] described an
extension to the persistence algorithm. The new algorithm is
capable of calculating a description of a topological feature
along with the creator and destroyer simplices of persistent
homology. The description is returned in the form of a sim-
plicial chain, i.e. a formal sum of simplices. Due to the alge-
braic nature of the persistence algorithm, a simplicial chain
in larger dimensions generally does not correspond to an in-
tuitive description of a “hole”. In fact, almost any closed
“path” of simplices of the given dimension is an admissi-
ble simplicial chain for the persistence algorithm. Fig. 1a,
for example, depicts two typical simplicial chains that are
the result of the persistence algorithm. These non-intuitive
chains inevitably occur because the persistence algorithm
does not have any information about the geometry of the data
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Simplicial chain Geodesic ball Sealed complex

Figure 3: Localizing a simplicial chain. The calculation of
the geodesic ball uses geometrical information about the in-
put data, while sealing the complex prepares the localization
of the next chain.

set [ZC08]. Before being of use for data analysis, simplicial
chains hence need to be localized.

A short note on terminology: The modified persistence
algorithm describes topological features by simplicial non-
bounding cycles, which are a special case of simplicial
chains. Because our method is capable of working with arbi-
trary simplicial chains, we still refer to these cycles as sim-
plicial chains in this paper.

4. Methodology

In this section, we first explain the localization algorithm
originally proposed by Chen and Freedman [CF10]. We
then detail our improvements to the algorithm such that it
can operate on weighted Rips graphs and obtain geometri-
cally more meaningful localizations. Last, we describe our
dimension-independent graph representation that we obtain
from localized simplicial chains. This representation serves
as a structural description of multivariate point clouds.

4.1. Localizing simplicial chains

Localization schemes aim to integrate some notion of ge-
ometry into the persistence calculation. This leads to simpli-
cial chains that correspond to salient properties of a data set.
Chen and Freedman [CF10] present a localization scheme
that is based on geodesic graph distances. In contrast to ran-
domized schemes such as the one described by Zomorodian
and Carlsson [ZC08], their algorithm is deterministic and
thus suitable for the analysis of multi-run data sets. Local-
ization yields simplicial chains that are geometrically more
meaningful: The distance of each simplicial chain to their
corresponding hole in the data set is less than for the random-
ized localization—see Fig. 1b. Ideally, if a high-dimensional
hole can be described by a set of data points, a localization
algorithm should produce a simplicial chain whose distance
to the set of points is as small as possible. Empirical evi-
dence suggests that this is the case when the deterministic
localization scheme is applied to real-world data sets. Given
a dimension d for which all simplicial chains are to be local-
ized, the algorithm originally consists of the following steps:

1. Calculate discrete geodesic distances on the Rips graph
Rε of the data set.

2. Extend the geodesic distance to all simplices in order to
obtain a description of discrete geodesic balls of Vε.

3. Find the smallest geodesic ball that contains an essential
simplicial chain of Vε, i.e. a homology class of Vε. This
radius is taken to be the size of the simplicial chain. By
using only simplices from the smallest geodesic ball, the
chain is localized.

4. Seal the simplicial complex and restart the algorithm until
all chains have been localized.

In the following paragraphs, we will give short descrip-
tions for each of the steps outlined above. Fig. 3 briefly illus-
trates the different steps in the algorithm. We refer to Chen
and Freedman [CF10] for more details.

Calculating discrete geodesic distances on Rε Each ver-
tex p of Rε defines a discrete geodesic distance function
fp by setting fp(q) := dist(p,q) for all vertices q, where
dist(p,q) is the number of edges on the shortest path con-
necting vertices p and q. If p and q are in different connected
components ofRε, then fp(q) :=∞.

Extending geodesic distances to Vε Given a fixed source
vertex p, the distance function can be extended to any
simplex σ of the simplicial complex by setting fp(σ) :=
maxq∈vert(σ) fp(q), i.e. the maximum function value of the
vertices of σ. This yields an ordering of Vε, and we define
a discrete geodesic ball of radius r with a centre vertex p
as the subcomplex of Vε that contains all simplices σ with
fp(σ)≤ r.

Finding the smallest geodesic ball containing an essential
simplicial chain The size of the simplicial chain is now set
to be the smallest radius of the geodesic ball centred at some
vertex p for which the persistence calculation returns an es-
sential hole in dimension d. To this end, we first calculate
the distance function fp for each vertex p. We then use the
values of fp to sort Vε and calculate its persistent homol-
ogy. We take the minimum radius as the creation threshold
of the first essential generator in dimension d. We obtain a
localized simplicial chain by applying the extended persis-
tence calculation by Zomorodian and Carlsson [ZC08] to the
smallest geodesic ball.

Sealing Vε After localizing the smallest chain in dimension
d, we add a new vertex v to Vε. For each of the d-simplices
of the localized chain, we add a (d + 1)-simplex with v as
an additional vertex to Vε. Furthermore, we add all faces
of these new simplices. This augmentation “closes” the d-
dimensional hole whose chain we localized. We can now re-
run the algorithm until all other chains in dimension d have
been localized.

This localization scheme is applicable in all dimensions,
but has an output-sensitive computational complexity of ap-
proximately O(bdn4), where bd is the Betti number in di-
mension d and n is the number of simplices of Vε. In a
follow-up publication, Chen and Freedman [CF11] show
that localizing simplicial chains to optimality is NP-hard in
general.

In its original description, the algorithm assumes that Rε

uses unit weights. For the analysis of multivariate point
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clouds, we prefer using the distances between data points
as edge weights in the neighbourhood graph. Keeping these
distances results in a more precise localization than the orig-
inal algorithm. We observed that for most data sets, the
Euclidean distance is a reasonable default choice. If avail-
able, domain-specific distance functions such as the Pearson
distance or the Jensen-Shannon divergence can be used as
well. The increased precision of our improved localization
algorithm requires a brute-force search over all vertices of
Rε in order to determine the smallest geodesic ball. While
Chen and Freedman [CF10] outline an optimized algorithm,
it is only applicable for graphs with unit weights. To en-
hance performance, we instead employ parallelization in the
search for the smallest geodesic ball: For smaller simplicial
complexes (< 106 simplices), the geodesic distance calcula-
tions for multiple source vertices can be performed in paral-
lel on the CPU. This can increase performance by a factor of
1.5–2 (given 4 cores), depending on whether the persistence
calculation or the number of vertices is the bottleneck. For
a further speed-up of the calculations, we employ a strategy
that resembles branch-and-bound: When calculating fp for
some vertex p, we may skip the calculation if all updated
weights of Vε are larger than the currently determined mini-
mum radius. By randomizing vertex traversal, our algorithm
has a chance of finding the minimum radius early, thereby
saving needless calculations.

4.2. Simplicial chain graphs

The localized simplicial chains serve to describe both the
topological and the geometrical structure of the data set.
We thus want to visualize them in order to obtain struc-
tural information about the multivariate input data set. The
common challenge for all visualizations is that even low-
dimensional simplicial chains cannot readily be drawn for
higher-dimensional data sets, as each simplex of the chain
corresponds to a subset of high-dimensional points.

Instead of trying to use the positional information of the
data points, we therefore decided to focus on their relations.
To this end, we display the simplicial chains as a graph, us-
ing the deterministic neato [EGK∗04] layout algorithm to
obtain reproducible graph layouts. We refer the reader to the
supplementary materials for a more detailed description of
the complete layout process. Our first attempt used simplices
as the graph nodes and connected them whenever they were
part of the same simplicial chain. Figure 4 depicts a typical
output (see Figure 5 for both the compressed and uncom-
pressed improved graph for the same input data). Although
the graph serves to give an overview of all available simpli-
cial chains, we ultimately considered it to be too abstract:
(i) The relation between a simplex shown in the graph and
the corresponding subset of the input data is not apparent.
(ii) Different chains cannot be distinguished if they share
the same simplex. (iii) Using nodes to encode information
about each simplicial chain is difficult because a node can
be shared by multiple chains.

Figure 4: Graph showing the connections between simplices
that belong to the same simplicial chain. See Sec. 4.2 for
more details.

To highlight the structural description of a multivariate
point cloud through simplicial chains, we thus integrated in-
formation about both the chains and the data points. To this
end, we first decompose each simplicial chain into the data
points it contains. This is done by inserting each vertex of
each simplex of the chain into a set. The set of indices is
then associated with the corresponding high-dimensional co-
ordinates. From this coordinate decomposition we, create a
graph with two types of nodes: (i) Chain nodes, which cor-
respond to a simplicial chain in the data set. (ii) Data nodes,
which correspond to a data point in the input point cloud.
Only data points that occur in a simplicial chain, i.e. that
are part of topological feature, will be represented as data
nodes. We create an edge between a chain node and a data
node whenever the corresponding simplicial chain contains
the corresponding data point. The valency of each data node
thus shows the number of simplicial chains it is a part of.
Note that there are no edges between chain nodes. We use
only the data nodes to show relations in the data set.

To maintain a sense of distances between different sub-
structures in the graph, we calculate the medoid of the coor-
dinate decomposition of each simplicial chain We then ad-
just the graph layout algorithm to place chain nodes such
that their medoid distances are respected. This ensures that
chains that are close in the input space will be placed in close
proximity in the graph layout.

Creating a graph with an embedded hierarchy of node
types proved to be advantageous for encoding different topo-
logical attributes. We first colour-coded all chain nodes by
their localized radius, using a diverging red-green colour
map (see left part of Figure 5 for a typical example). The
radius of a simplicial chain determines the amount of space
a topological feature encompasses in the input data set. A
chain with a large radius thus describes a structure that is
spread out over a large part of the data set. Chains with a
small radius, on the other hand, describe structures that are
more local. The colour-coding can be changed to represent
different attributes, such as the diameter or the (un-)weighted
volume [CF11]. Analysing these attributes is useful for the
comparison of different data sets.

While the colour-coded chain graph already serves to
highlight structures in a point cloud, we found that the
graph layout becomes increasingly cluttered for larger point
clouds. We thus compressed the chain graph: We remove all
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Figure 5: Uncompressed (left) and compressed (right) sim-
plicial chain graph for a subset of the PRIM 7 data set. The
compressed graph is less cluttered and simplifies analysis.

data nodes (and their associated edges) that have a valency
of 1. Hence, only data nodes that are part of multiple sim-
plicial chains remain in the chain graph. Since we lose the
information about the number of data points in a simplicial
chain, we scale the chain nodes accordingly. We found that
the compression effectively removes clutter and refer to the
resulting graph as the simplicial chain graph of the input
data set—see the right part of Figure 5 for an example.

The simplicial chain graph consequently describes a part
of the topological structure of a data set. We identified sev-
eral key properties: (i) The number of connected compo-
nents and the distances between different chain nodes in
the chain graph are correlated with the homogeneity of a
data set. A large number of simplicial chains sharing no
data points indicates that the data set contains multiple in-
homogeneous regions. For example, a data set containing
two classes of measurements, one lying on a hypertorus, the
other on a hypersphere, will show up as multiple connected
components in the chain graph. (ii) The size distributions of
the data nodes encode the size of substructures in a data set.
This information can be used when comparing multiple data
sets. If two data sets are created from the same experiment,
for example, their simplicial chain size distributions should
be approximately equal. A large difference may indicate a
sampling error (i.e. insufficient measurements in one data
set). (iii) The radii of simplicial chains highlight the sizes
of the inhomogeneous regions in the data set. A single sim-
plicial chain with a large radius (colour-coded in red to ex-
ploit pre-attentive processing) implies that data points bound
a large empty region in the data set. In a data set containing
experimental measurement data, for example, this highlights
missing values. These missing values may be caused by er-
roneous measuring equipment.

The simplicial chain graph is not limited to visualizing
chains of a single dimension. In Section 5, we analyse var-
ious data sets using a chain graph with both 1-dimensional
and 2-dimensional chains. To calculate the chain graph, we
only require a list of dimensions for localization and a value
for ε, which is used to control the persistent homology cal-
culation. Depending on ε, different structures can be empha-
sized in the data set, which in turn will cause the simplicial
chain graph to change. Figure 6 depicts changes in the chain

Figure 6: Changing the graph structure by varying ε serves
to emphasize structures of different sizes in a data set.

Figure 7: Data model and projections (MDS and Isomap) of
the PRIM 7 data set. Both projections only partially capture
the shape of the data set.

graph caused by large variances of ε. For small perturba-
tions of the ε parameter, however, the stability theorem of
Cohen-Steiner et al. [CSEH07] implies that the simplicial
chains will remain stable. In our application, users can refer
to persistence visualizations of the data set in order to decide
whether the selected value for ε is suitable. Note that the sim-
plicial chain graph will only show the homology classes of
Vε, i.e. topological features with a persistence value of +∞.
The reason for this restriction is that the localization of ar-
bitrary simplicial chains is still an open problem in topolog-
ical data analysis. For now, the simplicial chain graph thus
only focuses on the most prominent topological features of a
data set. Although the chain graph can easily accommodate
non-essential simplicial chains, they are not guaranteed to
describe salient structures in the data set—this necessitates
further research.

5. Results
In the following, we apply our method to several high-
dimensional data sets from different application domains.
For setting the ε parameter, we use two heuristics described
by Rieck et al. [RML12]. The first one uses dendrograms
and single-linkage clustering to support the user in select-
ing a threshold. The second one exploits distance estimates
in multivariate point clouds and is suitable for for unsuper-
vised, semiautomated analysis. As the selected data sets only
exhibit few topological attributes in higher dimensions, we
focus on 1- and 2-dimensional simplicial chains.

5.1. PRIM 7
The PRIM 7 data set consists of measurements from a clas-
sical experiment in high-energy particle physics. Each point
in this data set corresponds to a reaction in which four differ-
ent particles are created. The reaction products are character-
ized by 7 independent variables X1, . . . , X7—see Friedman
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Figure 8: Simplicial chain graph (left) and linked visualizations (right) of the PRIM 7 data set. Each connected component in
the graph describes a different group of measurements in the data set. See Sec. 5.1 for a detailed discussion.

and Tukey [FT74] for more details. The data set is interest-
ing because it exhibits a simple low-dimensional structure:
The data points are clumped near a 2-dimensional triangle,
with two linear “strands” extending from each vertex of the
triangle (see Fig. 7, left). The triangle is known to be char-
acterized by large variances in variables X3 and X5 [CS07].
The PRIM 7 data set is known to be challenging to anal-
yse using common projection methods or clustering algo-
rithms [CS07]. Fig. 7 shows two projections of the data set
obtained by multidimensional scaling (MDS) and Isomap.
Note that both methods capture only parts of the data model.
They show the central structure and some linear strands at its
boundary, but the complete model can only be constructed
using repeated guided projections. We thus used this data
set to validate the correctness of our algorithm and show its
advantages.

Persistent homology does not identify any prominent gen-
erators in dimensions ≥ 3, thereby confirming that the data
set has a low-dimensional structure. The simplicial chain
graph of the data set is depicted by Fig. 8, left. The graph
has many connected components. Their distributed layout
indicates that the corresponding measurements are scat-
tered over the parameter space—otherwise, we would ob-
tain a more densely-connected structure. A parallel coordi-
nate plot (PCP), Fig. 8, top right, of each connected com-
ponent confirms this: The variability in variables X3 and X5
shows that each component describes a different set of par-
ticle interactions within the centre of the parameter space.
The green structure behaves exceptionally—see the analysis
below. The other structures form well-separated strands in
the PCP. Again, the strands are best visible in variables X3
and X5. We also observe that the chain radii (indicated by the
node colours) do not exhibit much variance, apart from some
exceptions. This indicates that all topological features cor-
responding to the chains have approximately the same size

and thus “behave” roughly the same in terms of the parti-
cle interactions they describe. More precisely, chains of the
same radius tend to bound similar holes in the data set. Each
chain hence bounds a region with little or no measurements
in the data set. PRIM 7 indeed does not contain any parti-
cle interactions within these regions, likely because they do
not occur in nature. Information about such sparse regions
is valuable for domain experts: For one thing, sparse regions
may indicate physically impossible values or an experimen-
tal oversight. Moreover, the chain graph can aid in detecting
anomalous structures for repeated runs of the same exper-
iment. When data is assumed to be sampled from a high-
dimensional manifold, it is reasonable to expect that its topo-
logical shape exhibits little variation over multiple runs.

We finish our analysis by taking a look at the largest sim-
plicial chain (see highlighted node in Fig. 8, left), whose ra-
dius is strikingly different than the other radii. The size of
the node indicates that the chain contains many data points,
while the colour of the node indicates that its localization ra-
dius is large. In combination, these attributes suggest that the
chain spans a large empty region in the parameter space—
which may signify a salient feature of the data set. The PCP
(Fig. 8, middle right) shows that the chain is not part of the
centre of the data set as its variability in X6 is too large.
The scatterplot matrix (see Fig. 8, bottom right for some se-
lected projections) shows that the chain describes part of the
boundary of the PRIM 7 triangle. The remaining chains in
this connected component of the chain graph behave sim-
ilarly and exhibit variability in variables X2 and X6. These
chains thus describe measurements that describe different
particle interactions than in the rest of the data set.

Finally, we note that the isolated components in the chain
graph also describe holes in the centre of the data set. Due
to the sampling, they are not connected to other connected
components. Their missing connections are compensated by
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Figure 9: Heat map and simplicial chain graph for 2008 roll
call data. See Section 5.2 for a more detailed discussion.

the graph layout algorithm, which places these chains in
close proximity to the larger connected components.

5.2. Voting data

The votes in the U.S. House of Representatives are cast in
the form of “Yeas” and “Nays”, depending on whether a cer-
tain issue or bill is approved or disapproved of. We used
http://clerk.house.gov to obtain publicly available data for
previous sessions of Congress, spanning a period from 1990
to 2011. These data sets are a valuable resource for political
scientists, who use it to gain insight into the voting culture
of the United States. We converted the roll call results of
each year into high-dimensional point clouds. For this, we
assigned each representative a vector of +1, -1, 0, depend-
ing on whether the representative gave an approving vote,
an opposing vote, or abstained from voting. Depending on
the number of roll calls for each session of Congress, the re-
sulting point clouds contain about 420 points with 600–900
dimensions. Statistical analysis of each data set shows that
the votes have a clear separation, which makes it possible
to discern the party affiliation using e.g. principal compo-
nent analysis. Our topological analysis, in contrast, focuses
on the shape of the data set. We are especially interested in
substructures that define the data set in a sense, i.e. substruc-
tures without which the data set would change its topological
shape.

Topological analysis uncovers a simple structure for the
space of representatives: We do not find any non-trivial topo-
logical activity in dimensions ≥ 2, which suggests that the
data set has a low intrinsic dimensionality. This confirms es-
tablished results by Poole and Rosenthal [PR07]. We con-
tinued our analysis with voting records for 2008 and 2009
as these data sets contain the largest number of votes of the
whole period. Since topological analysis requires distances
between data points, the curse of dimensionality makes it
nearly impossible to define meaningful differences between,
for example, two vectors of length ≥ 600. As a preprocess-
ing step for further analysis, we thus applied non-metric
multidimensional scaling to embed the data set in a 25-
dimensional space. While the intrinsic dimension of the data
set is arguably smaller, we chose a dimension of 25 because
the algorithm converged faster and reported smaller stress

values. Rabinowitz [Rab75] showed that non-metric MDS is
a suitable tool for the analysis of political science data. Us-
ing statistical tools, we verified that the embedded data set
still exhibits the same party affiliation structure.

We then proceeded to use sorted heat maps (see Fig. 9
and 10) to show the general structure of the data set. The heat
map uses orange to indicate opposing votes, turquoise to in-
dicate approval, and white for abstention. Votes of each indi-
vidual representative are shown in the rows of the heat map.
The differently-coloured blocks indicate a clear distinction
between the two parties. Some issues or bills are approved
by both parties equally, apart from some dissenters. The sim-
plicial chain graph for the 2008 data shows two larger con-
nected components, one for the Democratic Party, the other
one for the Republican Party. Each chain comprises a set
of representatives with similar voting behaviour. By inspect-
ing the representatives and their “distances” to the party line
(which we considered to be the majority vote for the partic-
ular issue), we found that each chain contains those repre-
sentatives whose voting behaviour differs the most from the
party line. Hence, the dissenting representatives described
by each chain constitute the boundary of the party structure.
The smaller connected components describe smaller subsets
of the representatives (only about 2–3 data points) whose
voting behaviour is comparable, but does not coincide with
the dissenters of their respective parties. The data for 2009
exhibits a similar behaviour. Since there are slightly more
votes in the data set, the decomposition into exactly 2 large
structures is seen more clearly. The larger connected com-
ponent corresponds to the Democratic Party, which held the
majority of Congressional seats in 2009. A better detection
of the party boundary, resulting in more representatives dis-
agreeing with the party line, is thus to be expected.

In conclusion, the chain graph shows that the voting data
sets have a clear topological shape. This shape is defined by
all representatives whose votes disagree with their respec-
tive parties. Each connected component highlights the vot-
ing behaviour of a subset of the representatives. Each chain
describes a particular set of representatives with similar vot-
ing behaviour. These smaller subsets of representatives shed
light on the political climate (e.g. voting alliances). In addi-
tion, these substructures make up the boundary and the shape
of the votes of each party. A larger number of chain graphs
could be employed to show the evolution of voting behaviour
of the U.S. House of Representatives.

5.3. Tropical Atmosphere Ocean (TAO) array data
The El Niño phenomenon describes a strong climate pattern
that is defined by prolonged anomalies of sea surface tem-
peratures in the Pacific Ocean. El Niño typically occurs at ir-
regular intervals from 3–7 years and may last from 9 months
to 2 years. The mechanisms causing this phenomenon are
still under investigation. We obtained data from the Tropical
Atmosphere Ocean (TAO) array. The array consists of ap-
proximately 70 buoy moorings in the Tropical Pacific Ocean.
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Figure 10: Heat map and simplicial chain graph for 2009
roll call data. See Section 5.2 for a more detailed discussion.

At regular intervals, each buoy measures the zonal wind ve-
locity, meridional wind velocity, humidity, air temperature,
and sea surface temperature. All heat map visualizations will
show the attribute values in this order. We obtained com-
bined measurements for a period from 1980–1998. Several
occurrences of El Niño within this time period are known,
namely 1982–1983, 1986, 1991–92, 1993, 1994–1995, and
1997–1998.

The data set has 5 dimensions and around 180000 data
points (all measurements for the 18-year period). Missing
values make analysing the data set very challenging: Be-
cause of technical errors and different buoy configurations,
not all attribute measurements are available for the whole
recording period. Fig. 11 shows a comparison of several data
sets for two time periods (the remaining time periods in the
data set contain similar patterns). During 1996, no El Niño
occurred, while 1997–1998 saw the largest El Niño event on
record. For layout reasons, we did not incorporate any dis-
tance information in the graphs.

The chain graph for the 1993 period shows a single large
connected component (a), a small connected component (b),
and some isolated nodes (c). Fig. 11, right, depicts heat
maps for the chains in the connected components. The iso-
lated nodes (c) turn out to correspond to measurements with
missing humidity values and low values for both zonal and
meridional winds. Component (a) contains chains that ex-
hibit a distinct profile: Medium-low zonal and meridional
wind velocities, high values for humidity, air temperature,
and sea surface temperature. In contrast, component (b)
contains chains with slightly higher zonal wind velocities,
but lower meridional wind velocities. This illustrates that
the space of measurements contains several topologically-
distinct regions, which are captured correctly by the simpli-
cial chain graphs. These regions cannot be captured prop-
erly by distance-based methods, as the measurements do not
form significant clusters.

In contrast, the simplicial chain graph of the 1994–1995
data shows a different structure, with a new larger connected
component (f). Components (d) and (e) resemble the ones
for the 1993 data set. They describe a similar phenomenon:
Chains with medium-low zonal and meridional wind ve-
locities and high temperatures. Note that the measurements

contain missing humidity values (shown in black) but the
chain graph correctly reflects that their topological structure
is similar to the 1993 measurements. Component (f) con-
tains all measurements with extremal temperatures—these
are caused by the El Niño phenomenon. Since this connected
component is not present in the 1993 chain graph, its appear-
ance indicates that the topological shape of the 1994–1995
data undergoes a drastic change. With the benefit of hind-
sight, we know that this change was brought on by the El
Niño phenomenon.

The same anomalous changes in the measurements are re-
flected in the chain graphs for 1996 and 1997–1998, as well.
Especially for the last data set, there are many missing values
in all attributes, which results in a more fragmented space.
The chains still exhibit similar characteristics as in the pre-
vious data sets. The 1997–1998 shows the limitations of the
simplicial chain graph: The large amount of missing values
makes finding the “real” topology of the data set very diffi-
cult. This, in turn, makes the output of the simplicial chain
graph less stable. In the context of the other data sets, the
chain graph output suggests that the 1997–1998 data set is
more anomalous than the remaining data sets, exhibiting a
different topological structure. Clearly, any such assumption
obtained from the chain graph will have to be verified us-
ing a variety of different visualization techniques—the chain
graph serves as one indicator here.

6. Conclusion & future work
We introduced a novel visualization method that combines
topological and geometrical information to support struc-
tural analysis of multivariate point clouds. Our algorithm
uses persistent homology to obtain a multi-scale descrip-
tion of topological attributes in a point cloud. These at-
tributes are then assigned a simplicial chain, i.e. a set of
k-dimensional simplices describing a k-dimensional hole in
the data set. Since the simplicial chains initially do not con-
tain geometrical information, we use distance information
from the data set to obtain geometrically concise simpli-
cial chains. We now combine both data points and simpli-
cial chains from multiple dimensions into a single graph, the
simplicial chain graph. After compressing the chain graph
to gain a more succinct display, we use colours and scal-
ing to encode information about topological attributes. We
then proceeded to explain how certain patterns in the chain
graph point out structures in multivariate point clouds. By
analysing data sets from various disciplines, we demon-
strated how the chain graph supports multivariate data anal-
ysis. For each data set, we established how the graph can be
used to highlight anomalies and facilitate the comparison of
time-varying point clouds.

Future research might focus on aspects of simplicial chain
localization. First, the performance of the algorithm could
be improved by following a strategy proposed by Lewis and
Zomorodian [LZ13]. Second, localization should be appli-
cable to all topological features of Vε and not be restricted to
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Figure 11: Simplicial chain graphs showing measurements for periods without El Niño events (1993, 1996) and anomalous
periods with larger El Niño events (1994–1995, 1997–1998) in the TAO data set. For the heat maps on the right, we adjusted
the colour map to the global extremal values of each attribute in the complete data set to simplify cross-comparisons. See
Section 5.3 for a detailed discussion.

its homology classes. Another aspect for potential advance-
ments involves the size measure for simplicial chains. Cur-
rently, there is no measure that integrates more geometri-
cal information while still being computable in polynomial
time.
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