'Shall I compare thee to a network?'

Visualizing the Topological Structure of Shakespeare's Plays

Bastian Rieck Heike Leitte

Visual Information Analysis Group TU Kaiserslautern Germany

Why Shakespeare?

1564-1616

Tons of reasons: 38 plays, 154 sonnets, more than 1,000 words and 50 idioms...

Agenda

Social network analysis: well-established for 'real-world' social networks

- Create networks for Shakespeare's 38 plays
- Distant reading paradigm: Compare relations or structures
- Use novel methods to derive a structural descriptor of each play

Workflow

From plays to graphs

- Use freely-available tagged corpus¹
- Extract speakers by scene and count their words
- $\ \ \, \ \ \, \ \ \,$ Connect speakers u and v that co-occur in a scene by an edge
- Different edge weight schemes

¹http://lexically.net/wordsmith/support/shakespeare.html

Results

'Macbeth' vs. 'The Tempest'

Layout created with Gephi and ForceAtlas2.
The graphs appear to be different.
How to quantify this?

Results

'Macbeth' vs. 'The Tempest'

Layout created with Gephi and ForceAtlas2.

The graphs appear to be different.

How to quantify this?

A topological feature descriptor

- Features in graphs: number of connected components β_0 , number of cycles β_1
- Key insight: both numbers depend on the 'scale' at which we view the graph
- Obtain scale information by edge weights; analyse how β_0 and β_1 change

Example

- Observation: Some thresholds *create* a feature, other thresholds *destroy* a feature
- ϵ_0 creates four connected components
- ϵ_1 destroys one connected component by merging it with another one
- Add (ϵ_0, ϵ_1) to the *persistence diagram*

Persistence diagram

- Connected components
- Cycles

$$W_2(\mathbf{X}, \mathbf{Y}) := \left(\inf_{\eta \colon \mathbf{X} \to \mathbf{Y}} \sum_{x \in \mathbf{X}} \|x - \eta(x)\|_{\infty}^2 \right)^{\frac{1}{2}}$$

Results

Conclusion

- Proof-of-concept
- Extraction of co-occurrence networks from Shakespeare's plays
- Structural analysis based on topological features
- Future work:
 - Emotional content
 - Play recommendation
 - Other types of texts, other authors, ...
 - https://github.com/Submanifold/Shakespeare

10