
Basic Analysis of Bin-Packing Heuristics
Bastian Rieck

1. Results for the test problems

The benchmarks have been performed using an Intel Celeron M 1.5 GHz. The
results are not too surprising: Obviously, the Next-Fit heuristic is fastest because
only 1 bin has to be managed. However, due to the efficient data structure (a prior-
ity queue) that has been used for the Max-Rest heuristic, this heuristic will generally
be almost as fast as Next-Fit. Furthermore, the implementation of the Best-Fit
heuristic has a worst-case running time of O(Kn), where K is the maximum weight.
Thus, the slowest algorithms are First-Fit and First-Fit-Decreasing.

Detailed results can be studied in the table below. In each set, the best solutions
are marked using the dagger symbol “†”. The timing is not accurate for the small
running times. This is due to the CLOCKS PER SEC macro that has been used for
the benchmarks. Hence, in some cases, the same running times will appear. This
means that the running times differ by a very small amount (measured in “raw”
CPU cycles). A value of 0 signifies that the measurement is outside the notable
range.

The algorithms have been compiled with the -O3 optimizations of the g++ com-
piler. All heuristics have been abbreviated to fit in the table. Thus, MR is Max-Rest,
for example. The +-signs after the algorithm names specify whether an optimized
version of the algorithm has been used. For implementation details, refer to table
2 on page 6.

Table 1: Results for the test problems

Problem set Algorithm Bins Time in s

bp1.dat

MR+ 628 0
FF++ 564 0
FFD++ 545 0
NF 711 0
NFD+ 686 0
BF++ 553† 0

bp2.dat

MR+ 6131 0†

FF++ 5420 0†

FFD++ 5321† 0†

NF 6986 0†

NFD+ 6719 0†

BF++ 5377 0†

bp3.dat

MR+ 16637 0†

FF++ 16637 0.0071825
FFD++ 10000† 0†

NF 16637 0†

NFD+ 16637 0†

BF++ 16637 0†

1



2

Table 1: Results for the test problems

Problem set Algorithm Bins Time in s

bp4.dat

MR+ 29258 0.0078125
FF++ 25454 0.015625
FFD++ 25157† 0.0078125
NF 33397 0.0078125
NFD+ 32174 0†

BF++ 25303 0†

bp5.dat

MR+ 32524 0†

FF++ 30155 0.0078125
FFD++ 30111† 0†

NF 36623 0.0078125
NFD+ 37048 0†

BF++ 30152 0†

bp6.dat

MR+ 55566 0.0234375
FF++ 50021 0.0078125
FFD++ 49951† 0.0078125
NF 63078 0.0078125
NFD+ 59852 0†

BF++ 50021 0.0078125

bp7.dat

MR+ 38242 0.015625
FF++ 36863† 0.0078125
FFD++ 39276 0.0071825
NF 42082 0†

NFD+ 47937 0†

BF++ 36866 0.0703125

bp8.dat

MR+ 82804 0.0234375
FF++ 79746 0.015625
FFD++ 79130† 0.015625
NF 93618 0.0078125†

NFD+ 104096 0.0078125†

BF++ 79731 0.015625

bp9.dat

MR+ 293319 0.078125†

FF++ 252577 0.234375
FFD++ 251164† 0.125
NF 333852 0.0078125†

NFD+ 322643 0.015625
BF++ 251568 0.0390625

bp10.dat

MR+ 588478 0.171875
FF++ 506844 0.296875
FFD++ 504927† 0.179688
NF 669926 0.015625†

NFD+ 645906 0.0390625
BF++ 505643 0.046875

bp11.dat

MR+ 2929609 0.882812
FF++ 2510868 8.42188
FFD++ 2502387† 4.86719
NF 3333928 0.09375†



3

Table 1: Results for the test problems

Problem set Algorithm Bins Time in s

NFD+ 3225064 0.234375
BF++ 2504284 1.3125

2. Worst-case running time

2.1. First-Fit. In pseudo-code, we have the following algorithm:

Algorithm 1 First-Fit

1: for All objects i = 1, 2, . . . , n do
2: for All bins j = 1, 2, . . . do
3: if Object i fits in bin j then
4: Pack object i in bin j.
5: Break the loop and pack the next object.
6: end if
7: end for
8: if Object i did not fit in any available bin then
9: Create new bin and pack object i.

10: end if
11: end for

In the worst-case, a new bin has to be opened each time a new object is in-
serted. Thus, there are 1, 2, 3, . . . , n − 1 executions of the inner loop, which yields
an asympotical factor of O(n2).

2.2. First-Fit-Decreasing. Since all weights of the objects are known prior to
running any algorithm, Counting Sort is the best choice for sorting the objects.

Algorithm 2 First-Fit-Decreasing

1: Sort objects in decreasing order using Counting Sort.
2: Apply First-Fit to the sorted list of objects.

Since Counting Sort has a complexity of O(n+k), where k is the largest weight,
the algorithm is obviously dominated by the running time of First-Fit, which
yields a factor of O(n2).

2.3. Max-Rest. In pseudo-code, the following algorithm is used:

Algorithm 3 Max-Rest

1: for All objects i = 1, 2, . . . , n do
2: Determine k = min{i | ci = minj=m

j=1 cj}, the index of the bin with maximum
remaining capacity.

3: if Object i fits in bin k then
4: Pack object i in bin k.
5: else
6: Create new bin and pack object i.
7: end if
8: end for



4

If a naive algorithm is used, determining the bin with maximum remaining ca-
pacity yields a factor of O(n). Thus, the worst-case running-time of the algorithm
is O(n2).

A more detailed analysis shows that the bin can be determined by using a priority
queue (i.e. a heap). In this case, the bin can be determined in constant time.
Packing the object (either in a new bin or in an existing one) then requires adding
or updating an element of the heap, which can be done in O(log n). Hence, the
improved version of the algorithm has a worst-case running-time of O(n log n):

Algorithm 4 Max-Rest-Priority-Queue

1: for All objects i = 1, 2, . . . , n do
2: if Object i fits in top-most bin of the priority queue then
3: Remove top-most bin from queue.
4: Add object i to this bin.
5: Push updated bin to queue.
6: else
7: Create new bin and pack object i.
8: end if
9: end for

2.4. Next-Fit. In pseudo-code, my implementation proceeds as follows:

Algorithm 5 Next-Fit

1: for All objects i = 1, 2, . . . , n do
2: if Object i fits in current bin then
3: Pack object i in current bin.
4: else
5: Create new bin, make it the current bin, and pack object i.
6: end if
7: end for

Since packing an object can be done in constant time, the algorithm is dominated
by the loop, which has a running-time of Θ(n).

2.5. Next-Fit-Decreasing. The algorithm is straightforward:

Algorithm 6 Next-Fit-Decreasing

1: Sort objects in decreasing order using Counting Sort.
2: Apply Next-Fit to the sorted list of objects.

Since Next-Fit has a running time of Θ(n), the dominating factor is the Counting
Sort algorithm, which has a running time of O(n + k), where k is the maximum
weight of the problem.



5

2.6. Best-Fit. The algorithm works like this:

Algorithm 7 Best-Fit

1: for All objects i = 1, 2, . . . , n do
2: for All bins j = 1, 2, . . . do
3: if Object i fits in bin j then
4: Calulate remaining capacity after the object has been added.
5: end if
6: end for
7: Pack object i in bin j, where j is the bin with minimum remaining capacity

after adding the object (i.e. the object “fits best”).
8: If no such bin exists, open a new one and add the object.
9: end for

Since all bins are examined in each step, the algorithm has an obvious running-
time of O(n2). The running time can be decreased by using a heap in order to
determine the best bin:

Algorithm 8 Best-Fit-Heap

1: for All objects i = 1, 2, . . . , n do
2: Perform a Breadth-First-Search in the heap to determine the best bin.
3: if Best bin has been found then
4: Pack object i in this bin.
5: Restore the heap property.
6: else
7: Open a new bin and add the object.
8: end if
9: end for

Using a heap decreases the running time slightly. An even more rapid imple-
mentation of this algorithm will be outlined later on.

3. Speedup for choosing the right bin

Algorithms First-Fit-Decreasing and Next-Fit-Decreasing greatly benefit
from changing the sorting algorithm to Counting Sort, thus yielding a factor of
O(n) for sorting instead of the usual O(n log n) for Heapsort.

All algorithms benefit from the following idea: Since the minimum weight w is
known, a bin can be closed after adding an object if the remaining capacity of the
bin is less than the “limit capacity” cl = K − w (where K is the total capacity of
the bin).

If not mentioned otherwise, optimized versions of all algorithms have been im-
plemented. Figures 1 and 2 show the running times of all algorithms for problems
bp5 and bp8, respectively. The algorithms depicted in the figures are explained in
table 2.

3.1. First-Fit & First-Fit-Decreasing. The right bin can be determined very
quickly if the algorithm uses a map that stores the index j of the bin which contains
an object of weight w. Since the bins are filled in increasing order of their indices,
all bins with index j′ < j can be skipped when adding an object of weight w′ ≥ w.
Asymptotically, the algorithm is still in O(n2).

A sample implementation has been supplied with the source code. See function
first fit map for more details. In pseudo-code, we have:



6

Table 2. Naming schemes used in figures 1 and 2

MR Max-Rest
MR+ Max-Rest using a priority queue

FF First-Fit
FF+ First-Fit using the vector container from the STL. Thus, “almost full”

bins can be removed without having to re-order the array.
FF++ First-Fit using the map container from the STL. Thus, a lookup table is

created that determines the proper bin more rapidly.
FFD First-Fit-Decreasing using the Heapsort algorithm.
FFD+ First-Fit-Decreasing using FF+ and Counting Sort.
FFD++ First-Fit-Decreasing using FF++ and Counting Sort.

NF Next-Fit
NFD Next-Fit-Decreasing
NFD+ Next-Fit-Decreasing using Counting Sort.

BF Best-Fit

Figure 1. Running times in seconds for problem bp5. Note that
a running time of 0s simply means that only very few CPU cycles
have been used (in this case, the clock() function will not be able
to take accurate measurings).

0

0.5

1

1.5

2

2.5

3

MR MR+ FF FFD FF+ FFD+ FFD++ NF NFD NFD+ BF BF+ BF++

1.117

0.00781

2.148
2.477

0.227 0.258 0.234
0 0.03125 0

0.773

0.1406
0

Algorithm 9 First-Fit-Lookup

1: for All objects i = 1, 2, . . . , n do
2: Lookup the last bin j that was used to pack an object of this size. If no such

bin exists, set j = 1.
3: for All remaining bins j, j + 1, . . . do
4: if Object i fits in current bin then
5: Pack object i in current bin.
6: Save the current index in the lookup table.
7: Break the loop and pack the next object.
8: end if
9: end for

10: if Object i did not fit in any available bin then
11: Create new bin and pack object i.
12: end if
13: end for

3.2. Max-Rest. This algorithm greatly benefits from a priority queue (see the
running time analysis): When the heuristic needs to decide where to place an
object, the bin with the highest priority (i.e. the maximum remaining capacity)



7

F
ig

u
r
e

2
.

R
unning

tim
es

for
problem

b
p
8.

N
ote

that
a

logarithm
ic

scale
has

been
used

because
the

running
tim

es
differ

greatly.

0
.0

0
1

0
.0

1

0
.1 1

1
0

1
0
0

M
R

M
R

+
F
F

F
F
+

F
F
+

+
F
F
D

F
F
D

+
F
F
D

+
+

N
F

N
F
D

N
F
D

+
B

F
B

F
+

B
F
+

+

2
.8

4
4

0
.0

2
3
4

2
2
.8

9
8

0
.0

0
7
8
1

0
.0

1
5
6

2
6
.1

9
5

1
.3

8
3

0
.0

0
7
8
1

0
.0

0
7
8
1

0
.1

4
0
6

0
.0

0
7
8
1

0
.0

0
7
8
1

0
.0

3
1
3

0
.0

1
5
6



8

would be chosen from the queue. If the object does not fit, a new bin needs to be
created. If it does fit, the bin’s capacity is updated and it is placed back in the
priority queue.

A sample implementation has been supplied with the source code. See function
max rest pq for more details.

3.3. Best-Fit. The Best-Fit algorithm greatly benefits from using a lookup table
for the bin sizes. Index i of this table stores the number of bins with remaining
capacity i. When a new object is added, the lookup table is queried for increasing
remaining capacities. Thus, the first match will be the best one. The algorithm
can be formalized as follows:

Algorithm 10 Best-Fit-Lookup-Table

1: Initialize lookup table t with tK = n (there are n bins with remaining capacity
K, hence no object has been packed yet).

2: for All objects i = 1, 2, . . . , n do
3: Let wi be the current object size.
4: Search a suitable bin by querying the lookup table for bins of remaining

capacity wi, wi + 1, . . . until a bin has been found at index tl.
5: tl −−, because there is one bin less with remaining capacity l.
6: tl−wi + +, because the number of bins with remaining capacity l − wi has

been increased by one.
7: end for
8: Compute

∑i=K−1
i=0 ti in order to determine the number of bins that has to be

used.

Since the remaining capacity of a bin is at most K, a suitable bin can always be
determined in O(K). Because of the outer loop, the algorithm has a running time
of O(nK).

The obvious disadvantage of this algorithm is that the object positions are not
stored in the lookup table. This can be solved by using a table of queues, for
example, which contain pointers to the “real” bins. In the last two steps of the
outer loop, the elements would be removed or added to the queues, respectively.
Since this can be done in constant time, the running time of the algorithm is not
changed.

3.4. Next-Fit and Next-Fit-Decreasing. Since only one bin is managed at a
time, these algorithms cannot be optimized any further (apart from using Counting
Sort for Next-Fit-Decreasing).

4. Worst-case results

Claim 4.1. mFF < 17
10 · mOPT + 2

Proof. Already shown in lecture. �

Claim 4.2. mFFD < 11
9 · mOPT + 4

Proof. Already shown in lecture. �

Claim 4.3. mNF ≤ 2 · mOPT

Proof. For two subsequent bins, ci + ci+1 > 1 holds. If it were otherwise, no new
bin would have been opened. Hence, the solution of the heuristic is at most twice
as big as the optimum solution. The bound is tight for a problem that contains
n objects with weights 1

2 and n objects with weights 1
2n . If the objects arrive in



9

an alternating fashion, i.e. 1
2 , 1

2n , 1
2 , . . . , Next-Fit will create 2n bins, whereas the

optimal solution consists of n + 1 bins. �


	1. Results for the test problems
	2. Worst-case running time
	2.1. First-Fit
	2.2. First-Fit-Decreasing
	2.3. Max-Rest
	2.4. Next-Fit
	2.5. Next-Fit-Decreasing
	2.6. Best-Fit

	3. Speedup for choosing the right bin
	3.1. First-Fit & First-Fit-Decreasing
	3.2. Max-Rest
	3.3. Best-Fit
	3.4. Next-Fit and Next-Fit-Decreasing

	4. Worst-case results

